Mechanical Engineers

Summary

mechanical engineers image
Many mechanical engineers work in industries that manufacture machinery or automotive parts.
Quick Facts: Mechanical Engineers
2015 Median Pay $83,590 per year
$40.19 per hour
Typical Entry-Level Education Bachelor's degree
Work Experience in a Related Occupation None
On-the-job Training None
Number of Jobs, 2014 277,500
Job Outlook, 2014-24 5% (As fast as average)
Employment Change, 2014-24 14,600

What Mechanical Engineers Do

Mechanical engineering is one of the broadest engineering disciplines. Mechanical engineers design, develop, build, and test mechanical and thermal sensors and devices, including tools, engines, and machines.

Work Environment

Mechanical engineers generally work in offices. They may occasionally visit worksites where a problem or piece of equipment needs their personal attention. Mechanical engineers work mostly in engineering services, research and development, and manufacturing.

How to Become a Mechanical Engineer

Mechanical engineers typically need a bachelor’s degree in mechanical engineering or mechanical engineering technology. All states and the District of Columbia require mechanical engineers who sell services to the public to be licensed.

Pay

The median annual wage for mechanical engineers was $83,590 in May 2015.

Job Outlook

Employment of mechanical engineers is projected to grow 5 percent from 2014 to 2024, about as fast as the average for all occupations. Job prospects may be best for those who stay abreast of the most recent advances in technology.

State & Area Data

Explore resources for employment and wages by state and area for mechanical engineers.

Similar Occupations

Compare the job duties, education, job growth, and pay of mechanical engineers with similar occupations.

More Information, Including Links to O*NET

Learn more about mechanical engineers by visiting additional resources, including O*NET, a source on key characteristics of workers and occupations.

What Mechanical Engineers Do About this section

Mechanical engineers
Mechanical engineers develop and build mechanical devices for use in industrial processes.

Mechanical engineering is one of the broadest engineering disciplines. Mechanical engineers research, design, develop, build, and test mechanical and thermal sensors and devices, including tools, engines, and machines.

Duties

Mechanical engineers typically do the following:

  • Analyze problems to see how mechanical and thermal devices might help solve a particular problem
  • Design or redesign mechanical and thermal devices or subsystems, using analysis and computer-aided design
  • Develop and test prototypes of devices they design
  • Analyze the test results and change the design or system as needed
  • Oversee the manufacturing process for the device

Mechanical engineers design and oversee the manufacture of many products ranging from medical devices to new batteries.

Mechanical engineers design power-producing machines, such as electric generators, internal combustion engines, and steam and gas turbines, as well as power-using machines, such as refrigeration and air-conditioning systems.

Mechanical engineers design other machines inside buildings, such as elevators and escalators. They also design material-handling systems, such as conveyor systems and automated transfer stations.

Like other engineers, mechanical engineers use computers extensively. Mechanical engineers are routinely responsible for the integration of sensors, controllers, and machinery. Computer technology helps mechanical engineers create and analyze designs, run simulations and test how a machine is likely to work, interact with connected systems, and generate specifications for parts.

Work Environment About this section

Mechanical engineers
Although they do most of their work in an office setting, mechanical engineers also visit worksites to gain firsthand knowledge of their designs.

Mechanical engineers held about 277,500 jobs in 2014. The industries that employed the most mechanical engineers were as follows:

Engineering services 19%
Machinery manufacturing 15
Computer and electronic product manufacturing 7
Research and development in the physical, engineering, and life sciences 6
Aerospace product and parts manufacturing 6

Mechanical engineers generally work in offices. They may occasionally visit worksites where a problem or piece of equipment needs their personal attention. In most settings, they work with other engineers, engineering technicians, and other professionals as part of a team.

Work Schedules

Most mechanical engineers work full time, and about 1 in 3 worked more than 40 hours a week in 2014.

How to Become a Mechanical Engineer About this section

Mechanical engineers
Mechanical engineers analyze problems to see how a mechanical device might help to solve them.

Mechanical engineers typically need a bachelor’s degree in mechanical engineering or mechanical engineering technology. Mechanical engineers who sell services publicly must be licensed in all states and the District of Columbia.

Education

Mechanical engineers typically need a bachelor’s degree in mechanical engineering or mechanical engineering technology. Mechanical engineering programs usually include courses in mathematics and life and physical sciences, as well as engineering and design courses. Mechanical engineering technology programs focus less on theory and more on the practical application of engineering principles. They may emphasize internships and co-ops to prepare students for work in industry.

Some colleges and universities offer 5-year programs that allow students to obtain both a bachelor’s and a master’s degree. Some 5-year or even 6-year cooperative plans combine classroom study with practical work, enabling students to gain valuable experience and earn money to finance part of their education.

ABET accredits programs in engineering and engineering technology. Most employers prefer to hire students from an accredited program. A degree from an ABET-accredited program is usually necessary to become a licensed professional engineer.

Important Qualities

Creativity. Mechanical engineers design and build complex pieces of equipment and machinery. A creative mind is essential for this kind of work.

Listening skills. Mechanical engineers often work on projects with others, such as architects and computer scientists. They must listen to and analyze different approaches made by other experts to complete the task at hand.

Math skills. Mechanical engineers use the principles of calculus, statistics, and other advanced subjects in math for analysis, design, and troubleshooting in their work.

Mechanical skills. Mechanical skills allow engineers to apply basic engineering concepts and mechanical processes to the design of new devices and systems.

Problem-solving skills. Mechanical engineers need good problem-solving skills to take scientific discoveries and use them to design and build useful products.

Licenses, Certifications, and Registrations

Licensure is not required for entry-level positions as a mechanical engineer. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires

  • A degree from an ABET-accredited engineering program
  • A passing score on the Fundamentals of Engineering (FE) exam
  • Relevant work experience, typically at least 4 years
  • A passing score on the Professional Engineering (PE) exam

The initial FE exam can be taken after one earns a bachelor’s degree. Engineers who pass this exam are commonly called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering.

Several states require engineers to take continuing education to renew their licenses every year. Most states recognize licensure from other states, as long as the other state’s licensing requirements meet or exceed their own licensing requirements.

Several professional organizations offer a variety of certification programs for engineers to demonstrate competency in specific fields of mechanical engineering.

Advancement

A Ph.D. is essential for engineering faculty positions in higher education, as well as for some research and development programs. Mechanical engineers may earn graduate degrees in engineering or business administration to learn new technology, broaden their education, and enhance their project management skills. Mechanical engineers may become administrators or managers after obtaining the requisite experience.

Pay About this section

Mechanical Engineers

Median annual wages, May 2015

Engineers

$90,060

Mechanical engineers

$83,590

Total, all occupations

$36,200

 

The median annual wage for mechanical engineers was $83,590 in May 2015. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $53,640, and the highest 10 percent earned more than $128,430.

In May 2015, the median annual wages for mechanical engineers in the top industries in which they worked were as follows:

Research and development in the physical, engineering, and life sciences $95,700
Aerospace product and parts manufacturing 89,720
Computer and electronic product manufacturing 87,710
Engineering services 85,920
Machinery manufacturing 76,810

Most mechanical engineers work full time, and about 1 in 3 worked more than 40 hours a week in 2014.

Job Outlook About this section

Mechanical Engineers

Percent change in employment, projected 2014-24

Total, all occupations

7%

Mechanical engineers

5%

Engineers

4%

 

Employment of mechanical engineers is projected to grow 5 percent from 2014 to 2024, about as fast as the average for all occupations. Mechanical engineers can work in many industries and on many types of projects. As a result, their growth rate will differ by the industries that employ them. Job prospects may be best for those who stay informed regarding the most recent advances in technology.

Mechanical engineers are projected to experience much faster than growth in engineering services as companies continue to contract work from these firms. Mechanical engineers will also remain involved in various manufacturing industries, particularly transportation equipment. They will be needed to design the next generations of vehicles and vehicle systems, such as hybrid-electric cars and clean diesel automobiles.

Mechanical engineers often work on the newest industrial pursuits. The fields of alternative energies, remanufacturing, and nanotechnology may offer new opportunities for occupational growth. Remanufacturing—rebuilding goods for a new use after they have worn out or become nonfunctional—holds promise because it reduces the cost of waste disposal.

Nanotechnology, which involves manipulating matter at the tiniest levels, may affect the employment of mechanical engineers because they will be needed to design production projects on the basis of that technology. Nanotechnology will be useful in areas such as healthcare and designing more powerful computer chips.

Job Prospects

Prospects for mechanical engineers overall are expected to be good. They will be best for those with training in the latest software tools, particularly for computational design and simulation. Such tools allow engineers and designers to take a project from the conceptual phase directly to a finished product, eliminating the need for prototypes.

Engineers who have experience or training in three-dimensional printing also will have better job prospects.

Employment projections data for mechanical engineers, 2014-24
Occupational Title SOC Code Employment, 2014 Projected Employment, 2024 Change, 2014-24 Employment by Industry
Percent Numeric

SOURCE: U.S. Bureau of Labor Statistics, Employment Projections program

Mechanical engineers

17-2141 277,500 292,100 5 14,600 [XLSX]

State & Area Data About this section

Occupational Employment Statistics (OES)

The Occupational Employment Statistics (OES) program produces employment and wage estimates annually for over 800 occupations. These estimates are available for the nation as a whole, for individual states, and for metropolitan and nonmetropolitan areas. The link(s) below go to OES data maps for employment and wages by state and area.

Projections Central

Occupational employment projections are developed for all states by Labor Market Information (LMI) or individual state Employment Projections offices. All state projections data are available at www.projectionscentral.com. Information on this site allows projected employment growth for an occupation to be compared among states or to be compared within one state. In addition, states may produce projections for areas; there are links to each state’s websites where these data may be retrieved.

Career InfoNet

America’s Career InfoNet includes hundreds of occupational profiles with data available by state and metro area. There are links in the left-hand side menu to compare occupational employment by state and occupational wages by local area or metro area. There is also a salary info tool to search for wages by zip code.

Similar Occupations About this section

This table shows a list of occupations with job duties that are similar to those of mechanical engineers.

Occupation Job Duties ENTRY-LEVEL EDUCATION Help 2015 MEDIAN PAY Help
Architectural and engineering managers

Architectural and Engineering Managers

Architectural and engineering managers plan, direct, and coordinate activities in architectural and engineering companies.

Bachelor's degree $132,800
Drafters

Drafters

Drafters use software to convert the designs of engineers and architects into technical drawings. Most workers specialize in architectural, civil, electrical, or mechanical drafting and use technical drawings to help design everything from microchips to skyscrapers.

Associate's degree $52,720
Materials engineers

Materials Engineers

Materials engineers develop, process, and test materials used to create a wide range of products, from computer chips and aircraft wings to golf clubs and biomedical devices. They study the properties and structures of metals, ceramics, plastics, composites, nanomaterials (extremely small substances), and other substances to create new materials that meet certain mechanical, electrical, and chemical requirements.

Bachelor's degree $91,310
Mathematicians

Mathematicians

Mathematicians conduct research to develop and understand mathematical principles. They also analyze data and apply mathematical techniques to help solve real-world problems.

Master's degree $111,110
Mechanical engineering technicians

Mechanical Engineering Technicians

Mechanical engineering technicians help mechanical engineers design, develop, test, and manufacture mechanical devices, including tools, engines, and machines. They may make sketches and rough layouts, record and analyze data, make calculations and estimates, and report their findings.

Associate's degree $53,910
Natural sciences managers

Natural Sciences Managers

Natural sciences managers supervise the work of scientists, including chemists, physicists, and biologists. They direct activities related to research and development, and coordinate activities such as testing, quality control, and production.

Bachelor's degree $120,160
Petroleum engineers

Petroleum Engineers

Petroleum engineers design and develop methods for extracting oil and gas from deposits below the Earth’s surface. Petroleum engineers also find new ways to extract oil and gas from older wells.

Bachelor's degree $129,990
Physicists and astronomers

Physicists and Astronomers

Physicists and astronomers study the ways in which various forms of matter and energy interact. Theoretical physicists and astronomers may study the nature of time or the origin of the universe. Some physicists design and perform experiments with sophisticated equipment such as particle accelerators, electron microscopes, and lasers.

Doctoral or professional degree $110,980
Sales engineers

Sales Engineers

Sales engineers sell complex scientific and technological products or services to businesses. They must have extensive knowledge of the products’ parts and functions and must understand the scientific processes that make these products work.

Bachelor's degree $97,650
Nuclear engineers

Nuclear Engineers

Nuclear engineers research and develop the processes, instruments, and systems used to derive benefits from nuclear energy and radiation. Many of these engineers find industrial and medical uses for radioactive materials—for example, in equipment used in medical diagnosis and treatment.

Bachelor's degree $102,950

Contacts for More Information About this section

For more information about general engineering education and mechanical engineering career resources, visit

American Society of Mechanical Engineers

American Society for Engineering Education

Technology Student Association

For more information about accredited engineering programs, visit

ABET

For more information about licensure as a mechanical engineer, visit

National Council of Examiners for Engineering and Surveying

National Society of Professional Engineers

O*NET

Automotive Engineers

Fuel Cell Engineers

Mechanical Engineers

Suggested citation:

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2016-17 Edition, Mechanical Engineers,
on the Internet at http://www.bls.gov/ooh/architecture-and-engineering/mechanical-engineers.htm (visited December 04, 2016).

Publish Date: Thursday, December 17, 2015

What They Do

The What They Do tab describes the typical duties and responsibilities of workers in the occupation, including what tools and equipment they use and how closely they are supervised. This tab also covers different types of occupational specialties.

Work Environment

The Work Environment tab includes the number of jobs held in the occupation and describes the workplace, the level of physical activity expected, and typical hours worked. It may also discuss the major industries that employed the occupation. This tab may also describe opportunities for part-time work, the amount and type of travel required, any safety equipment that is used, and the risk of injury that workers may face.

How to Become One

The How to Become One tab describes how to prepare for a job in the occupation. This tab can include information on education, training, work experience, licensing and certification, and important qualities that are required or helpful for entering or working in the occupation.

Pay

The Pay tab describes typical earnings and how workers in the occupation are compensated—annual salaries, hourly wages, commissions, tips, or bonuses. Within every occupation, earnings vary by experience, responsibility, performance, tenure, and geographic area. This tab may also provide information on earnings in the major industries employing the occupation.

State & Area Data

The State and Area Data tab provides links to state and area occupational data from the Occupational Employment Statistics (OES) program, state projections data from Projections Central, and occupational information from the Department of Labor's Career InfoNet.

Job Outlook

The Job Outlook tab describes the factors that affect employment growth or decline in the occupation, and in some instances, describes the relationship between the number of job seekers and the number of job openings.

Similar Occupations

The Similar Occupations tab describes occupations that share similar duties, skills, interests, education, or training with the occupation covered in the profile.

Contacts for More Information

The More Information tab provides the Internet addresses of associations, government agencies, unions, and other organizations that can provide additional information on the occupation. This tab also includes links to relevant occupational information from the Occupational Information Network (O*NET).

2015 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2015, the median annual wage for all workers was $36,200.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

Work experience in a related occupation

Work experience that is commonly considered necessary by employers, or is a commonly accepted substitute for more formal types of training or education.

Number of Jobs, 2014

The employment, or size, of this occupation in 2014, which is the base year of the 2014-24 employment projections.

Job Outlook, 2014-24

The projected percent change in employment from 2014 to 2024. The average growth rate for all occupations is 7 percent.

Employment Change, 2014-24

The projected numeric change in employment from 2014 to 2024.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Employment Change, projected 2014-24

The projected numeric change in employment from 2014 to 2024.

Growth Rate (Projected)

The percent change of employment for each occupation from 2014 to 2024.

Projected Number of New Jobs

The projected numeric change in employment from 2014 to 2024.

Projected Growth Rate

The projected percent change in employment from 2014 to 2024.

2015 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2015, the median annual wage for all workers was $36,200.