Materials Engineers

Summary

materials engineers image
Materials engineers develop, process, and test materials used to create a range of products.
Quick Facts: Materials Engineers
2015 Median Pay $91,310 per year
$43.90 per hour
Typical Entry-Level Education Bachelor's degree
Work Experience in a Related Occupation None
On-the-job Training None
Number of Jobs, 2014 25,300
Job Outlook, 2014-24 1% (Little or no change)
Employment Change, 2014-24 300

What Materials Engineers Do

Materials engineers develop, process, and test materials used to create a wide range of products, from computer chips and aircraft wings to golf clubs and biomedical devices. They study the properties and structures of metals, ceramics, plastics, composites, nanomaterials (extremely small substances), and other substances to create new materials that meet certain mechanical, electrical, and chemical requirements.

Work Environment

Materials engineers generally work in offices where they have access to computers and design equipment. Others work in factories or research and development laboratories. Materials engineers typically work full time and may work overtime hours when necessary.

How to Become a Materials Engineer

Materials engineers must have a bachelor’s degree in materials science and engineering or in a related engineering field. Completing internships and cooperative engineering programs while in school can be helpful in getting hired as a materials engineer.

Pay

The median annual wage for materials engineers was $91,310 in May 2015.

Job Outlook

Employment of materials engineers is projected to show little or no change from 2014 to 2024. Materials engineers will be needed to design uses for new materials both in traditional industries, such as aerospace manufacturing, and in industries focused on new medical or scientific products. However, most materials engineers work in manufacturing industries, which are expected to experience employment declines.

State & Area Data

Explore resources for employment and wages by state and area for materials engineers.

Similar Occupations

Compare the job duties, education, job growth, and pay of materials engineers with similar occupations.

More Information, Including Links to O*NET

Learn more about materials engineers by visiting additional resources, including O*NET, a source on key characteristics of workers and occupations.

What Materials Engineers Do About this section

Materials engineers
Materials engineers work with metals, ceramics, and plastics to create new materials.

Materials engineers develop, process, and test materials used to create a range of products, from computer chips and aircraft wings to golf clubs and biomedical devices. They study the properties and structures of metals, ceramics, plastics, composites, nanomaterials (extremely small substances), and other substances to create new materials that meet certain mechanical, electrical, and chemical requirements. They also help select materials for specific products, develop new ways to use existing materials, and develop new materials.

Duties

Materials engineers typically do the following:

  • Plan and evaluate new projects, consulting with other engineers and managers as necessary
  • Prepare proposals and budgets, analyze labor costs, write reports, and perform other managerial tasks
  • Supervise the work of technologists, technicians, and other engineers and scientists
  • Design and direct the testing of processing procedures
  • Monitor how materials perform and evaluate how they deteriorate
  • Determine causes of product failure and develop ways of overcoming such failure
  • Evaluate technical specifications and economic factors relating to the design objectives of processes or products

Materials engineers create and study materials at an atomic level. They use computers to replicate the characteristics of materials and their components. They solve problems in a number of engineering fields, such as mechanical, chemical, electrical, civil, nuclear, and aerospace.

Materials engineers may specialize in understanding specific types of materials. The following are examples of types of materials engineers:

Ceramic engineers develop ceramic materials and the processes for making them into useful products, from high-temperature rocket nozzles to glass for LCD flat-panel displays.

Composites engineers develop materials with special, engineered properties for applications in aircraft, automobiles, and related products.

Metallurgical engineers specialize in metals, such as steel and aluminum, usually in alloyed form with additions of other elements to provide specific properties.

Plastics engineers develop and test new plastics, known as polymers, for new applications.

Semiconductor processing engineers apply materials science and engineering principles to develop new microelectronic materials for computing, sensing, and related applications.

Work Environment About this section

Materials engineers
Materials engineers may work in laboratories or industrial settings to observe the results of their research and development.

Materials engineers held about 25,300 jobs in 2014. The industries that employed the most materials engineers were as follows:

Aerospace product and parts manufacturing 13%
Engineering services 11
Primary metal manufacturing 10
Computer and electronic product manufacturing 10
Research and development in the physical, engineering, and life sciences 8

They often work in offices where they have access to computers and design equipment. Others work in factories or research and development laboratories. Materials engineers may work in teams with scientists and engineers from other backgrounds.

Work Schedules

Materials engineers generally work full time. About 1 out of 3 materials engineers worked more than 40 hours per week in 2014.

How to Become a Materials Engineer About this section

Materials engineers
Materials engineers plan and evaluate new projects, consulting with others as necessary.

Materials engineers must have a bachelor’s degree in materials science and engineering or in a related engineering field. Completing internships and cooperative engineering programs while in school can be helpful in getting a position as a materials engineer.

Education

Students interested in studying materials engineering should take high school courses in mathematics, such as algebra, trigonometry, and calculus; in science, such as biology, chemistry, and physics; and in computer programming.

Entry-level jobs as a materials engineer require a bachelor’s degree. Bachelor’s degree programs include classroom and laboratory work focusing on engineering principles.

Some colleges and universities offer a 5-year program leading to both a bachelor’s and master’s degree. A graduate degree, which may be at the Ph.D. level, allows an engineer to work as a postsecondary teacher or to do research and development.

Many colleges and universities offer internships and cooperative programs in partnership with industry. In these programs, students gain practical experience while completing their education.

Many engineering programs are accredited by ABET. Some employers prefer to hire candidates who have graduated from an accredited program. A degree from an ABET-accredited program is usually necessary to become a licensed professional engineer.

Important Qualities

Analytical skills. Materials engineers often work on projects related to other fields of engineering. They must determine how materials will be used and how they must be structured to withstand different conditions.

Math skills. Materials engineers use the principals of calculus and other advanced topics in math for analysis, design, and troubleshooting in their work.

Problem-solving skills. Materials engineers must understand the relationship between materials’ structures, their properties, how they are made, and how these factors affect the products they are used to make. They must also figure out why a product might have failed, design a solution, and then conduct tests to make sure that the product does not fail again. These skills involve being able to identify root causes when many factors could be at fault.

Speaking skills. While working with technicians, technologists, and other engineers, materials engineers must state concepts and directions clearly. When speaking with managers, these engineers must also be able to communicate engineering concepts to people who may not have an engineering background.

Writing skills. Materials engineers must write plans and reports clearly so that people without a materials engineering background can understand the concepts.

Licenses, Certifications, and Registrations

Licensure for materials engineers is not as common as it is for other engineering occupations, nor it is required for entry-level positions. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires

  • A degree from an ABET-accredited engineering program
  • A passing score on the Fundamentals of Engineering (FE) exam
  • Relevant work experience, typically at least 4 years
  • A passing score on the Professional Engineering (PE) exam

The initial Fundamentals of Engineering (FE) exam can be taken after graduation from college. Engineers who pass this exam are commonly called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering.

Several states require continuing education for engineers to keep their license. Most states recognize licensure from other states if the licensing state’s requirements meet or exceed their own requirements.

Certification in the field of metallography, the science and art of dealing with the structure of metals and alloys, is available through ASM International and other materials science organizations.

Additional training in fields directly related to metallurgy and materials’ properties, such as corrosion or failure analysis, is available through ASM International.

Advancement

Junior materials engineers usually work under the supervision of experienced engineers. In large companies, new engineers may receive formal training in classrooms or seminars. As engineers gain knowledge and experience, they move on to more difficult projects where they have greater independence to develop designs, solve problems, and make decisions.

Eventually, materials engineers may advance to become technical specialists or to supervise a team of engineers and technicians. Many become engineering managers or move into other managerial positions or sales work. An engineering background is useful in sales because it enables sales engineers to discuss a product’s technical aspects and assist in product planning, installation, and use. For more information, see the profiles on architectural and engineering managers and sales engineers.

Pay About this section

Materials Engineers

Median annual wages, May 2015

Materials engineers

$91,310

Engineers

$90,060

Total, all occupations

$36,200

 

The median annual wage for materials engineers was $91,310 in May 2015. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $53,120, and the highest 10 percent earned more than $144,720.

In May 2015, the median annual wages for materials engineers in the top industries in which they worked were as follows:

Computer and electronic product manufacturing $108,660
Aerospace product and parts manufacturing 105,890
Research and development in the physical, engineering, and life sciences 95,540
Engineering services 86,720
Primary metal manufacturing 76,170

Most materials engineers work full time. About 1 out of 3 materials engineers worked more than 40 hours per week in 2014.

Job Outlook About this section

Materials Engineers

Percent change in employment, projected 2014-24

Total, all occupations

7%

Engineers

4%

Materials engineers

1%

 

Employment of materials engineers is projected to show little or no change from 2014 to 2024. Materials engineers will be needed to design uses for new materials both in traditional industries, such as aerospace manufacturing, and in industries focused on new medical or scientific products. However, most materials engineers work in manufacturing industries, which are expected to experience employment declines.

Demand for materials engineers is expected to come from growing fields, such as biomedical engineering. Material engineers’ expertise is crucial in helping biomedical engineers develop new materials for medical implants. Research and development firms will continue to employ materials engineers as they explore new uses for materials technology in consumer products, industrial processes, and medicine.

Job Prospects

Prospects should be best for applicants who gain experience by participating in internships or co-op programs while in college.

Computer modeling and simulations, rather than extensive and costly laboratory testing, are increasingly being used to predict the performance of new materials. Thus, those with a background in computer modeling should have better employment opportunities.

Employment projections data for materials engineers, 2014-24
Occupational Title SOC Code Employment, 2014 Projected Employment, 2024 Change, 2014-24 Employment by Industry
Percent Numeric

SOURCE: U.S. Bureau of Labor Statistics, Employment Projections program

Materials engineers

17-2131 25,300 25,600 1 300 [XLSX]

State & Area Data About this section

Occupational Employment Statistics (OES)

The Occupational Employment Statistics (OES) program produces employment and wage estimates annually for over 800 occupations. These estimates are available for the nation as a whole, for individual states, and for metropolitan and nonmetropolitan areas. The link(s) below go to OES data maps for employment and wages by state and area.

Projections Central

Occupational employment projections are developed for all states by Labor Market Information (LMI) or individual state Employment Projections offices. All state projections data are available at www.projectionscentral.com. Information on this site allows projected employment growth for an occupation to be compared among states or to be compared within one state. In addition, states may produce projections for areas; there are links to each state’s websites where these data may be retrieved.

Career InfoNet

America’s Career InfoNet includes hundreds of occupational profiles with data available by state and metro area. There are links in the left-hand side menu to compare occupational employment by state and occupational wages by local area or metro area. There is also a salary info tool to search for wages by zip code.

Similar Occupations About this section

This table shows a list of occupations with job duties that are similar to those of materials engineers.

Occupation Job Duties ENTRY-LEVEL EDUCATION Help 2015 MEDIAN PAY Help
Aerospace engineers

Aerospace Engineers

Aerospace engineers design primarily aircraft, spacecraft, satellites, and missiles. In addition, they test prototypes to make sure that they function according to design.

Bachelor's degree $107,830
Architectural and engineering managers

Architectural and Engineering Managers

Architectural and engineering managers plan, direct, and coordinate activities in architectural and engineering companies.

Bachelor's degree $132,800
Biomedical engineers

Biomedical Engineers

Biomedical engineers combine engineering principles with medical and biological sciences to design and create equipment, devices, computer systems, and software used in healthcare.

Bachelor's degree $86,220
Chemical engineers

Chemical Engineers

Chemical engineers apply the principles of chemistry, biology, physics, and math to solve problems that involve the production or use of chemicals, fuel, drugs, food, and many other products. They design processes and equipment for large-scale manufacturing, plan and test production methods and byproducts treatment, and direct facility operations.

Bachelor's degree $97,360
Chemists and materials scientists

Chemists and Materials Scientists

Chemists and materials scientists study substances at the atomic and molecular levels and the ways in which the substances interact with one another. They use their knowledge to develop new and improved products and to test the quality of manufactured goods.

Bachelor's degree $72,610
Electrical and electronics engineers

Electrical and Electronics Engineers

Electrical engineers design, develop, test, and supervise the manufacturing of electrical equipment, such as electric motors, radar and navigation systems, communications systems, and power generation equipment. Electronics engineers design and develop electronic equipment, such as broadcast and communications systems—from portable music players to global positioning systems (GPSs).

Bachelor's degree $95,230
Mechanical engineers

Mechanical Engineers

Mechanical engineering is one of the broadest engineering disciplines. Mechanical engineers design, develop, build, and test mechanical and thermal sensors and devices, including tools, engines, and machines.

Bachelor's degree $83,590
Physicists and astronomers

Physicists and Astronomers

Physicists and astronomers study the ways in which various forms of matter and energy interact. Theoretical physicists and astronomers may study the nature of time or the origin of the universe. Some physicists design and perform experiments with sophisticated equipment such as particle accelerators, electron microscopes, and lasers.

Doctoral or professional degree $110,980
Sales engineers

Sales Engineers

Sales engineers sell complex scientific and technological products or services to businesses. They must have extensive knowledge of the products’ parts and functions and must understand the scientific processes that make these products work.

Bachelor's degree $97,650

Contacts for More Information About this section

For information about materials engineering career resources, visit

American Ceramic Society

American Institute of Mining, Metallurgical, and Petroleum Engineers

Materials Research Society

The Minerals, Metals and Materials Society

For information about general engineering career resources, visit

American Society for Engineering Education

Technology Student Association

For more information about licensure as a professional engineer, visit

National Council of Examiners for Engineering and Surveying

National Society of Professional Engineers

For more information about certification, visit

ASM International 

For information about accredited engineering programs, visit

ABET

O*NET

Materials Engineers

Suggested citation:

Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2016-17 Edition, Materials Engineers,
on the Internet at http://www.bls.gov/ooh/architecture-and-engineering/materials-engineers.htm (visited August 26, 2016).

Publish Date: Thursday, December 17, 2015

What They Do

The What They Do tab describes the typical duties and responsibilities of workers in the occupation, including what tools and equipment they use and how closely they are supervised. This tab also covers different types of occupational specialties.

Work Environment

The Work Environment tab includes the number of jobs held in the occupation and describes the workplace, the level of physical activity expected, and typical hours worked. It may also discuss the major industries that employed the occupation. This tab may also describe opportunities for part-time work, the amount and type of travel required, any safety equipment that is used, and the risk of injury that workers may face.

How to Become One

The How to Become One tab describes how to prepare for a job in the occupation. This tab can include information on education, training, work experience, licensing and certification, and important qualities that are required or helpful for entering or working in the occupation.

Pay

The Pay tab describes typical earnings and how workers in the occupation are compensated—annual salaries, hourly wages, commissions, tips, or bonuses. Within every occupation, earnings vary by experience, responsibility, performance, tenure, and geographic area. This tab may also provide information on earnings in the major industries employing the occupation.

State & Area Data

The State and Area Data tab provides links to state and area occupational data from the Occupational Employment Statistics (OES) program, state projections data from Projections Central, and occupational information from the Department of Labor's Career InfoNet.

Job Outlook

The Job Outlook tab describes the factors that affect employment growth or decline in the occupation, and in some instances, describes the relationship between the number of job seekers and the number of job openings.

Similar Occupations

The Similar Occupations tab describes occupations that share similar duties, skills, interests, education, or training with the occupation covered in the profile.

Contacts for More Information

The More Information tab provides the Internet addresses of associations, government agencies, unions, and other organizations that can provide additional information on the occupation. This tab also includes links to relevant occupational information from the Occupational Information Network (O*NET).

2015 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2015, the median annual wage for all workers was $36,200.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

Work experience in a related occupation

Work experience that is commonly considered necessary by employers, or is a commonly accepted substitute for more formal types of training or education.

Number of Jobs, 2014

The employment, or size, of this occupation in 2014, which is the base year of the 2014-24 employment projections.

Job Outlook, 2014-24

The projected percent change in employment from 2014 to 2024. The average growth rate for all occupations is 7 percent.

Employment Change, 2014-24

The projected numeric change in employment from 2014 to 2024.

Entry-level Education

Typical level of education that most workers need to enter this occupation.

On-the-job Training

Additional training needed (postemployment) to attain competency in the skills needed in this occupation.

Employment Change, projected 2014-24

The projected numeric change in employment from 2014 to 2024.

Growth Rate (Projected)

The percent change of employment for each occupation from 2014 to 2024.

Projected Number of New Jobs

The projected numeric change in employment from 2014 to 2024.

Projected Growth Rate

The projected percent change in employment from 2014 to 2024.

2015 Median Pay

The wage at which half of the workers in the occupation earned more than that amount and half earned less. Median wage data are from the BLS Occupational Employment Statistics survey. In May 2015, the median annual wage for all workers was $36,200.