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1.   Introduction.  There are several weighting adjustment methods that can be used to adjust for 

potential bias resulting from survey nonresponse.  Different types of weighting schemes can have 

different impacts on nonresponse bias and variance of the estimates.  While some might lower the 

bias, they might also increase the variance, or where some have low variance, they might also 

result in higher average bias.  When assessing and adjusting for nonresponse bias analysis, we can 

only examine the potential for bias so far as we have proxy variables related to key survey 

estimates.  When we assess nonresponse bias, there are several reasons that we might not find 

evidence of nonresponse bias, four of which include: 1) there is no bias; 2) there was no bias for 

the key estimates for which we had proxy data; 3) we have controlled for all the variables that 

account for bias; or 4) we do not have very good proxy data. When we do find evidence of 

nonresponse bias, we can assess whether adding or removing variables from the current 

nonresponse adjustment method would reduce that bias without increasing the variance, using a 

simulation study.     

 

When nonresponse adjustment is done in combination with calibration, or is followed up by 

calibration, it may be hard to see the impact of different weighting schemes, since calibration can 

smooth out differences across the different weighting scenarios.  Not only can we change the 

variables we use to adjust for nonresponse, but we can also use a variety of different models to 

create nonresponse adjustment weights.  In some cases, we might just use a simple raking method, 

in other cases we might create a propensity score model, and in other cases we might just use 

calibration to adjust for nonresponse.  In the case of using raking versus a propensity score model, 

there are several variations to choose from.  The impact of raking can depend on the number of 

variables and cells we include, and how related they are to the survey estimates, and the impact of 

using a propensity score model may vary depending on the variables, how related the variables are 

to nonresponse and key survey estimates, and the type of model used to generate the propensity 

scores.  And since both raking and propensity score adjustment are often followed by calibration, it 

can sometimes be difficult to see any differences in bias or variance caused by using one method 

versus the other if we only compare the final estimate.  However, for some surveys, calibration 
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might not be an option if there are no or very limited targets on which to calibrate.  This paper 

focuses on comparing the impact of different nonresponse adjustment scenarios prior to 

calibration.   

 

2.  Discussion of Survey Weighting and Nonresponse.  Survey data are generally stored in 

rectangular data files, each row corresponding to a sample unit (a household, a person, or an 

establishment) and each column corresponding to a survey variable. In addition to the survey 

variables, the data file will also include two sets of weights; the base weights and the final weights.  

The process leading to the final weighting system generally consists of three main stages: 1) base 

weights, 2) nonresponse adjustment, and 3) calibration.  In the first weighting stage, a base weight 

is assigned to every sample unit. Most often, the base weights are defined as the inverse of the 

inclusion probability in the sample. Virtually all the surveys face the problem of missing data.  In 

particular, some sample units may not be reachable or may refuse to respond. This is referred to as 

unit nonresponse. Survey nonresponse always raises concern about the potential for nonresponse 

bias.  

 

The goal of the second stage of the weighting process is to reduce the potential nonresponse bias.  

If certain households or persons within households are systematically less likely to respond to a 

survey, and they have common attributes related to what is measured by the survey, then there is 

potential for nonresponse bias.    In order to adjust for nonresponse, we divide the base weights by 

the estimated response propensity. 

 

After the weights undergo nonresponse adjustment, an additional modification is performed to 

ensure the consistency between survey estimates and known population totals. This process is 

referred to as calibration (Haziza & Beaumont, 2017). We provide an overview of the second stage 

below: 

 

Let U denote a finite population of size N and let s be a sample, of size n, selected according a 

sampling design ( )ps   with first-order inclusion probabilities  ,k  1,..., .k N  The base weight 

attached to unit k is defined as 1/k kd  and the system { ; }kd k s constitutes the basic weighting 

system. In this work, we are interested in estimating finite population totals. Let y be a generic 

survey variable. The total of the population y-values is 


 .y k
k U

t y  In the absence of nonresponse, 

the basic weighting system ensures that, when applied to the y-variable, the resulting estimator, 



ˆ .F
y k k

k s
t d y   is design-unbiased for .yt  This estimator is the well-known Horvitz-Thompson 

estimator. 

 

In the presence of unit nonresponse, the information is collected on a subset rs  of s. The set sr 

represents the set of respondents observed at the end of data collection. Conceptually, this set can 

be thought of as being generated according to a nonresponse mechanism ( | )rqs s , where the 
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subscript q refers to the nonresponse mechanism.  Let kp  be the probability of response associated 

with unit k and let k̂p be an estimate of kp . The weights adjusted for nonresponse are defined as 

                                                                      * ˆ/ ,      .k k k rw d p k s         

 

The weighting system adjusted for nonresponse is described as *{ ; }.k rw k s  Applying this weighting 

system to a y-variable leads to the so-called propensity score adjusted estimator 
 

                                                                       


 *ˆ .
r

PSA
y k k

k s
t wy                                                                                             

To study the properties of ˆ ,PSA
yt we consider its conditional nonresponse bias defined as  

 

                                                                     ˆ ˆ ˆ( ) ( | ) ,PSA PSA F
q y q y yB t E t s t   

 

Where (.|s)qE  denotes the expectation operator with respect to the nonresponse mechanism. The 

conditional nonresponse variance of 
 

P̂SA
yt  is (̂ | )PSA

q yV t s . 

 
3.  Analysis of Nonresponse Adjustment Simulation in the ATUS.  There are a number of methods 
that exist for estimating the response probabilities k̂p  to ultimately construct the adjustment 

weights. We distinguish between parametric methods (that include logistic regression as a special 
case) from nonparametric methods (that include classification and regression trees as a special case).  
 
In this work, we conduct an extensive simulation study based on the American Time Use Survey 
(ATUS) data to compare the bias and variance properties of both unadjusted and adjusted 
estimators.  ATUS is an annual household survey sponsored by the Bureau of Labor Statistics and 
conducted by the U.S. Census Bureau using Computer Assisted Telephone Interviews (CATI).  The 
ATUS is used to estimate how people spend their time.  The ATUS sample is drawn from the 
population of households that responded to the Current Population Survey (CPS); and therefore CPS 
data is available for the full ATUS sample.   Characteristics of ATUS respondents and nonrespondents 
can be modeled using the CPS frame data as a proxy for ATUS respondent and nonrespondent 
characteristics.  The CPS frame data is strongly correlated with the ATUS sample respondent data on 
respondent age, household size, number of children, respondent sex, respondent employment 
status (see Table 1), and the ATUS key estimates are somewhat to moderately correlated with 
respondent CPS employment status (see Table 2).  The CPS also collects data on a number of 
respondent and household characteristics (some that are collected on the ATUS, some that are not) 
that can be used to model characteristics of ATUS respondents versus nonrespondents (see Table 3). 
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Table 1:  CPS & ATUS Variable Correlations 

Variable Name        Pearson/Point Biserial 

          Correlation   

Respondent Age        .99 

Household Size        .97 

Number of Children < 18       .82    

Respondent’s Sex        .99 

Respondent Employment Status      .84 

 

 

Table 2:  CPS Employment Status & ATUS Variable Correlations 

Variable Name        Pearson/Point Biserial 

          Correlation   

Sleeping         -.14 

Household Activities       -.11 

Housework        -.07    

Food Prep         -.12 

Caring for and Helping Household Members     .04   

Care of Household  Children       .05  

Caring for and Helping Household  Children       .05    

Socializing, Relaxing, and Leisure      -.34   

Communicating        -.04  

Watching TV        -.26  

Sports, Exercise, and Recreation       .03 

 
Table 3:  ATUS Frame Variables 

Variable Name 

CPS Household Ownership Type 
CPS Household Income  
CPS Household Income Missing Indicator 
CPS Education Level 
CPS Respondent Sex 
CPS Presence of Child 
CPS Respondent Race 
CPS Respondent Employment Status 
CPS Respondent Age 
CPS Household Type 
CPS Household Size 
CPS Race Indicator 
CPS Respondent Hispanic (Y/N) 
CPS Respondent Black (Y/N) 
CPS Respondent Disability Flag 
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CPS Number of Children under 18 
Geographic Division 
Geographic Region 
Metropolitan Status 
ATUS Survey Incentive 
ATUS Interview Reference Day (Weekend vs. Weekday) 
ATUS Interview Reference Day (Sun-Sat)  

 
3a. ATUS Imputation.  Our data file included the entire ATUS sample for the first quarter of 2015.  
The ATUS sample was subject to unit nonresponse. That is, there were missing y-variables for a 
portion of the ATUS sample. We started our analysis by first completing the ATUS data file using 
imputation.  We used the CPS auxiliary information which is available for all the ATUS sample units 
to create imputation values. The y-variables were imputed separately (this is often called marginal 
imputation) using random hot-deck imputation within classes to get a complete data file. The 
imputation classes were formed on the basis of CPS auxiliary information. The use of marginal 
imputation that does not preserve the relationship between variables is justified by the fact that we 
were only interested in univariate parameters (population totals) for each y-variable. After 
imputation, the data file consisted of 6,230 records representing the ‘’full ATUS sample’’.  Note that 
the original ATUS sample exhibited a response rate of 50 percent approximately.  
 
3b. ATUS Nonresponse Simulation.  For each method, we generated 1,000 replicates using two 
distinct nonresponse simulation models from our sample of 6,230 records; 1) logistic regression; and 
2) a regression tree.  We used both a logistic regression model and a regression model to simulate 
nonresponse, since we assumed that the weights created using a logistic regression model would 
perform better when nonresponse was simulated using logistic regression, and that weights created 
using a regression tree model would perform better when nonresponse was simulated using a 
regression tree model.   Both nonresponse simulation models included all of the available CPS frame 
variables (see Table 3) and led to an approximate response rate of 50 percent in each replicate.  We 
compared the correlation between actual ATUS 2015 response indicator and simulated response 
indicator to access how similar the nonresponse simulation models were to actual ATUS response.   
The simulation scenario using a logistic regression model appeared to be more strongly correlated 
with actual ATUS nonresponse than the simulation scenario using a regression tree model (Table 4).   
 

 
Table 4:  Simulated ATUS Nonresponse versus Actual ATUS Response Biserial Correlations 

Nonresponse Simulation Model   Correlation 

Regression Tree    0.21 

Logistic Regression    0.28 

 
 
3c. Nonresponse Adjustment.  In order to assess the impact of adding additional variables to the 
ATUS nonresponse adjustment, we compared bias and variance across five weighting schemes: 1) 
current ATUS adjustment, 2) logistic regression, 3) weighting classes based on logistic regression , 4) 
regression tree using a CHAID growth method, and 5) regression tree using Gini growth method. In 
addition, we computed unadjusted estimators as follows: 
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Unadjusted:  Constant estimated response probabilities: the probability of response for each unit 

was estimated by the overall response rate / ,rn n  where rn denotes the number of respondents 

to the survey. That is, ˆ /k rp n nfor all k. 

 

We now describe the five weighting schemes in more detail: 
 

(1) Current ATUS Nonresponse Adjustment:  The current ATUS procedures that consists of creating 

14 weighting cells based on the day of the week that a person is interviewed and whether or not 

they received an incentive for their interview.  The ATUS nonresponse adjustment factor is 

calculated using the actual response rates observed within each of the 14 cells.   That is 

ˆ / ,k rg gp n n where gn and rgn denote respectively the number of sample units and the number of 

respondents in each cell g.  𝑔 = 1, … ,14. .   

The current ATUS nonresponse adjustment uses a logistic regression model with three inputs (see 
Table 5), and relies on calibration to adjust for any remaining bias.  Discussions with the BLS ATUS 
program office, indicated that nonresponse may also be related to the variables listed in Table 6, 
and therefore, we have added these variables to the logistic regression and regression tree 
models.   
 
Table 5:  Current ATUS Nonresponse Adjustment Inputs: 

Variable Name 

ATUS Survey Incentive 
ATUS Interview Reference Day (Sun-Sat)  
ATUS Survey Incentive * ATUS Interview Reference Day (Sun-Sat)  

 
 

Table 6:  Propensity Score Model Inputs: 

Variable Name 

CPS Household Ownership Type 
CPS Household Income  
CPS Household Income Missing Indicator 
CPS Education Level 
CPS Respondent Sex 
CPS Presence of Child 
CPS Respondent Race 
CPS Respondent Employment Status 
CPS Respondent Age 
ATUS Survey Incentive 
ATUS Interview Reference Day (Weekend vs. Weekday) 

 
(2) Logistic Regression: The estimated response probabilities are given by 

 

                                                
 
 





ˆexp
ˆ ,ˆ1 exp

k
k

k

p
x β

x β
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where kx is a vector of fully observed variables (shown in Table 6) attached to unit k believed to 

be associated with the probability of response. 

 

(3) Logistic Regression Using Weighting Classes: Preliminary estimated response probabilities �̂�𝑘 are 

first obtained through a logistic regression model for k sbased on the predictors listed in Table 

6.  These preliminary response probabilities are then ordered from the lowest to the largest. 

Weighting classes of equal size are then formed with respect to the �̂�𝑘’s. In our experiments, we 

used 10 weighting classes. In each class, the response probability of unit k in class g was estimated 

by the actual response rate observed in the same class. That is, ˆ / ,k rg gp n n where gn and rgn
denote respectively the number of sample units and the number of respondents in class g, 

1,...,10.g   

 

(4) Regression Tree Model Using CHAID:  The CHAID tree model uses a combination of a Chi-Square 

and an F test for to test for significance testing (depending on the level of the predictor variables 

included the model), and attempts to identify significant predictors of survey response.  The 

regression tree sequentially evaluates each of the predictor variables with relation to survey 

response, using the p value to select the most significant predictor, as well as to identify the 

optimal breakpoint for classifying and distinguishing between respondents and nonrespondents.  

After the initial split is carried out, the model automatically identifies interaction, mediating, and 

moderating effects by continuing to further segment the data using recursive partitioning until no 

more significant splits can be identified, or until the growth limit in terms of number of leaves, 

branches, or the depth of the tree is reached.  When the tree is complete, it will be comprised of 

potentially several leaves also referred to as end nodes, which are mutually exclusive groups that 

are each internally homogenous and externally heterogeneous with respect to propensity scores, 

and together comprise the full dataset.  In each end node, the response probability of a unit was 

estimated by the actual response rate observed in the same end node. 

 

(5) Regression Tree Model Using Gini Index:  The Gini tree method is similar to the CHAID method, 

but instead of using statistical testing, it uses the Gini index as a measure of impurity 

(heterogeneity) to identify optimal tree splits.  The lower the index is, the more pure 

(homogenous the groupings are).  The Gini index is calculated as follows:  

 

𝑖(𝑡) =  ∑ 𝑝(𝑖|𝑡)𝑝(𝑗|𝑡),

𝑖≠𝑗

 

where 𝑝(𝑗|𝑡) is the predicted response propensity for class j with an assigned binary value of 1 
for node t, and 𝑝(𝑖|𝑡) is the inverse of that [1 − (𝑝(𝑗|𝑡)] with an assigned value of 0 for node t 
(Breiman, Friedman, Olshen, & Stone, 1984).   
 

Note that weighting schemes two through five included the following additional variables not 
currently used in the ATUS weighting method shown in weighting scheme one: respondent age, 
household size, number of children in the household, respondent sex, respondent education level, 
reported household income, and whether household income was reported or imputed.   
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3d. ATUS Nonresponse Bias and Variance Estimation of Key ATUS Estimates.  Using a simulation 
study, we were able to assess whether sample estimates were consistently over or under (bias) and 
how much the sample estimates varied (variance) using a given weighting scheme.  The results of 
this paper will focus on how bias and variance compared across the five different nonresponse 
weighting adjustment methods.   Nonresponse bias and variance were assessed for 13 key ATUS 
estimates.  These 13 key ATUS estimates were identified by the ATUS program office and are shown 
in Table 7.   
 
Table 7:  ATUS Y Variables: 

Variable Name 

Sleeping 
Household Activities 
Housework 
Caring for and Helping Household Members 
Care of Household Children 
Caring for and Helping Household Children 
Socializing & Communicating 
Watching TV 
Sports, Exercise, and Recreation 
Participating in Sports, Exercise, and Recreation 
Travel 
Volunteering 
Secondary Childcare 

 
 
The performance of the adjustment weights varied across the 13 key estimates; meaning that some 
weights did a better job reducing bias and/or variance for some variables and a worse job for other 
variables.  However, since it is standard practice to use a single weighting adjustment procedure for 
all the estimates, we were more interested in how the adjustment weights performed overall across 
all 13 key estimates than we were in how they performed for a single estimate.  In order to compare 
the performance of the five weighting adjustment methods in both of the simulation scenarios 
described above, we plotted bias and variance values for each of the 13 key estimates and 
compared the overall performance across each of the five weighting schemes. 
 
As a measure of weight variation, we calculated the variance of each of the five weighting methods. 
 

𝑉𝐴𝑅(𝑊𝑘
𝑁𝑅) =  

∑(𝑤𝑘
𝑁𝑅 − �̂�𝑘

𝑁𝑅)
2

𝑛 − 1
 

 
We also computed the relative variance of a given weight adjustment method, using the ATUS 
estimator as the reference: 
 

𝑅𝑉𝐴𝑅(𝑊𝑘
𝑁𝑅) = = 100 𝑋

𝑉𝐴𝑅
(𝑊𝑘

𝑁𝑅)

𝑉𝐴𝑅
(𝑊𝑘

𝐴𝑇𝑈𝑆)

. 

 
As a measure of relative bias of an estimate (�̂�𝑦

𝑁𝑅), we calculated an average of the Monte Carlo 

percent of relative bias across all 1,000 replicates: 
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                                                         𝑅𝐵𝑚𝑐(�̂�𝑦
𝑁𝑅) = 100 𝑋 

𝐸𝑚𝑐 (�̂�𝑦
𝑁𝑅−�̂�𝑦

𝐹)

�̂�𝑦
𝐹  , 

 
 
where  
 
�̂�𝑦

𝑁𝑅 denotes an estimator after nonresponse treatment; 

�̂�𝑦
𝐹 denotes the full sample estimate from ATUS; 

Emc ( . ) denotes the Monte Carlo average over the 1000 replicates. 
 
Relative bias less than zero indicates negative bias, meaning we underestimate given nonresponse.  
Relative bias greater than zero indicates positive bias, meaning we overestimate given nonresponse.   
We also computed the absolute value of the relative bias of a given weight adjustment method, using 
the ATUS estimator as the reference: 
 

                                                         𝑅𝐵𝐶𝑚𝑐(�̂�𝑦
𝑁𝑅) = 𝐴𝐵𝑆 (100 𝑋

𝑅𝐵𝑚𝑐(�̂�𝑦
𝑁𝑅)

𝑅𝐵𝑚𝑐(�̂�𝑦
𝐴𝑇𝑈𝑆)

). 

 

If  𝑅𝐵𝐶𝑚𝑐(�̂�𝑦
𝑁𝑅)= 100, the estimator based on a weight adjustment procedure exhibits the same bias 

as the ATUS estimator.  If 𝑅𝐵𝐶𝑚𝑐(�̂�𝑦
𝑁𝑅) < 100, the estimator based on a weight adjustment procedure 

is more efficient than the ATUS estimator. 
 
We also computed the average Monte Carlo Mean Square Error: 
 

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝑁𝑅) = 𝐸𝑚𝑐(�̂�𝑦

𝑁𝑅 − �̂�𝑦
𝐹)

2
 

 
Lastly, we computed the relative efficiency of a given weight adjustment method, using the ATUS 
estimator as the reference: 
 

                                                                 𝑅𝐸(�̂�𝑦
𝑁𝑅) = 100 𝑋

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝑁𝑅)

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝐴𝑇𝑈𝑆)

. 

 

If  𝑅𝐸(�̂�𝑦
𝑁𝑅) = 100, the estimator based on a weight adjustment procedure exhibits the same efficiency 

as that of the ATUS estimator.  If 𝑅𝐸(�̂�𝑦
𝑁𝑅) < 100, the estimator based on a weight adjustment 

procedure is more efficient than the ATUS estimator. 
 
3e. Methodological Overview.  An overview of the steps taken in this paper to assess and compare 
alternative weighting schemes to the current ATUS weighting scheme are laid out in Figure 1.   
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Figure 1 Research Study Process Flow 

 
 
4.  Results.  We compared each of the four alternative weighting schemes to the current ATUS 
weighting method by looking at the variance of the weights, the bias, and the mean square error.   
 
4a. Variance of the Weights.  When we look at just the variance of the weights, we see that the 
logistic regression model using classes was the only weighting scheme to result in less variation in the 
adjustment weights than ATUS, whether we simulated nonresponse using a tree or a logistic 
regression model (see Figure 2).  When we used a regression tree model to simulate nonresponse, 
the logistic regression weights had less variation than either set of weights produced using regression 
trees, but more variation than the ATUS weights or the class weights.  When we used a logistic 
regression model to simulate nonresponse, the regression tree weights had less variation than the 
weights produced using a logistic regression model, but more variation than the ATUS weights or the 
class weights.   
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Figure 2:  Relative Variance of the Weights by Nonresponse Simulation Model.  Values less than 100 
indicate less variation in the weights than ATUS, and values greater than 100 indicate more variation 
in the weights than ATUS.  Note that CHAID and Gini have very similar levels of variation in the 
weights using a regression tree model to simulate nonresponse.      

 
 

4b. Nonresponse Bias.  When we compared the nonresponse bias using each of the alternative 
weighting schemes relative to the bias produced using the ATUS weights, trees tended to produce 
the least amount of bias across the thirteen key estimates (see Figure 3).  When we simulated 
nonresponse using a regression tree model, both the logistic regression and the logistic regression 
class weights tended to perform about the same as ATUS; however, when we used logistic regression 
to simulate nonresponse, they varied in performance; the logistic regression weights tended to 
outperform the ATUS weights, where the class weights tended to perform relatively the same as the 
ATUS weights.  

 

Figure 3:  Monte Carlo Percent Relative Bias of the Adjusted Estimator using the Tree versus the 
Logistic Regression Nonresponse Simulation Scenarios with all CPS Frame Variables. Values less 
than 100 indicate less relative bias than using the ATUS weights, and values greater than 100 indicate 
more bias than using the ATUS weights. 
 
 

Tree Regression Nonresponse Simulation Logistic Regression Nonresponse Simulation 
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4c. Mean Square Error.   When we compared the mean square error using each of the alternative 
weighting schemes relative to the mean square error produced using the ATUS weights, the results 
varied depending on the model used to simulate nonresponse.  When we used a tree model to 
simulate nonresponse, the tree weights tended to perform worse than the ATUS weights, and the 
logistic regression weights performed better for some estimates and worse for others; while the class 
weights tended to perform similarly to ATUS (see Figure 4).  When we used a logistic regression 
model to simulate nonresponse, the tree and the logistic regression weights tended to outperform 
ATUS for about half of the estimates, and trees tended to slightly outperform logistic regression in 
those cases.  In the cases where trees and logistic regression outperformed ATUS, the class weights 
tended to perform worse than ATUS, and in the cases where the tree and logistic regression weights 
performed worse than ATUS, the class weights tended to outperform ATUS (see Figure 4).  Regardless 
of how nonresponse was simulated, trees tended to perform better than ATUS with regard to sports, 
exercise, and recreation type activities; secondary childcare; and travel; and they tended to perform 
worse than ATUS when adjusting for time spent caring for children and household members, as well 
as time spent socializing and communicating. 
 

Figure 4:  Mean Square Error of the Adjusted Estimator using the Tree versus the Logistic 
Regression Nonresponse Simulation Scenario with all CPS Frame Variables.  Values less than 100 
indicate less mean square error than using the ATUS weights, and values greater than 100 indicate 
higher mean square error than using the ATUS weights. 

 
 

If we focus specifically on the estimates used for press releases such as time spent on Caring for and 
Helping Household Members, Housework, Sleeping, Socializing & Communicating, and Watching TV, 
we see that the tree weights tend to result in less bias than the ATUS weights, except for time spent 
Caring for and Helping Household Members (according to both nonresponse simulation models) and 
Housework (according to the tree nonresponse simulation model).  Using the regression tree 
nonresponse simulation model, we saw higher mean square error values in comparison to ATUS for 
all five of these estimates; however, when we used a logistic regression model to simulate 
nonresponse, trees resulted in lower mean square error for Housework and Sleeping, but not for 

Tree Regression Nonresponse Simulation Logistic Regression Nonresponse Simulation 
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time spent Caring for and Helping Household Members, Socializing & Communicating, and watching 
TV.   
 
5.  Discussion.  Regression tree weights tended to result in less bias than logistic regression, class, or 
ATUS weights, however they also tended to have higher variance both in terms of the weights 
themselves, and in terms of the estimates with respect to mean square error values.  Depending on 
how nonresponse is simulated, trees may perform worse overall with regard to mean square error or 
it may vary based on the estimate.  The nonresponse simulation model based on regression trees, 
takes into account interaction effects, where the logistic regression simulation only models main 
effects.  And while the logistic regression model does not account for interaction effects, the 
nonresponse simulated using logistic regression was more highly correlated with actual ATUS 
nonresponse than the nonresponse simulated using regression trees.  If the nonresponse simulation 
model using logistic regression is a more accurate depiction of actual ATUS nonresponse (as the 
higher correlation might indicate), then using propensity score weighting with regression trees may 
be a good alternative both in terms of bias and mean square error; however, if actual ATUS 
nonresponse is closer to what was simulated using a regression tree model, then the current ATUS 
nonresponse adjustment model may work better when we take into account variation of the weights 
and mean square error. 
 
Given that ATUS is used to produce trend estimates of how Americans spend their time, very careful 
consideration would have to be given to changing the weighting method used to adjust for 
nonresponse, since it would require reweighting previous datasets or making a break in the time 
series.  One possible consideration might include exploring the use of regression trees to identify 
additional post strata adjustment targets as proposed by McConville and Toth (2017) for the 
Occupational Employment Statistics Survey.  The ATUS program could consider using regression trees 
to explore and identify additional post adjustment strata beyond incentive and interview day to 
adjust for nonresponse.   
 
6.  Limitations.  The focus of this paper was to compare the current ATUS weighting methods with 
alternative propensity score weighting methods.  By taking a ratio of the relative bias and mean 
square error over the ATUS relative bias or mean square error, we are only assessing whether the 
propensity score method being compared is better or worse than the current ATUS weighting 
method.  This is not an estimate of the actual bias or mean square error.  A comparison of the actual 
estimate of the relative bias across all the weighting methods, as well as a comparison of the mean 
square error compared to the unadjusted weight can be found in the appendix. 
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8.  Appendix. 
 
Nonresponse Bias & Variance Assessment 
 As a measure of relative bias of an estimate (�̂�𝑦

𝑁𝑅), we calculated the average Monte Carlo percent of 

relative bias across all 1,000 replicates 
 

                                                         𝑅𝐵𝑚𝑐(�̂�𝑦
𝑁𝑅) = 100 𝑋 

𝐸𝑚𝑐 (�̂�𝑦
𝑁𝑅−�̂�𝑦

𝐹)

�̂�𝑦
𝐹  , 

 
where  
 
�̂�𝑦

𝑁𝑅 denotes an estimator after nonresponse treatment; 

�̂�𝑦
𝐹 denotes the full sample estimate from ATUS; 

Emc ( . ) denotes the Monte Carlo average over the 1000 replicates. 
 
Relative bias less than zero indicates negative bias, meaning we underestimate given nonresponse.  
Relative bias greater than zero indicates positive bias, meaning we overestimate given nonresponse.  
We expect relative bias to vary across different estimates, and that some nonresponse adjustment 
weights will adjust better for nonresponse than others, depending on the weight adjustment method.   
 
Monte Carlo mean square error 
 
We also computed the average Monte Carlo Mean Square Error: 
 

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝑁𝑅) = 𝐸𝑚𝑐(�̂�𝑦

𝑁𝑅 − �̂�𝑦
𝐹)

2
 

 
Lastly, we computed the relative efficiency of a given weight adjustment method, using the 
unadjusted estimator as the reference: 

                                                                 𝑅𝐸(�̂�𝑦
𝑁𝑅) = 100 𝑋

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝑁𝑅)

𝑀𝑆𝐸𝑚𝑐(�̂�𝑦
𝑈𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

)
. 

 

If  𝑅𝐸(�̂�𝑦
𝑁𝑅) = 100, the estimator based on a weight adjustment procedure exhibits the same efficiency 

as that of the unadjusted estimator.  If 𝑅𝐸(�̂�𝑦
𝑁𝑅) < 100, the estimator based on a weight adjustment 

procedure is more efficient than the unadjusted estimator. 
 

https://arxiv.org/pdf/1712.05708.pdf
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Figure A1:  Monte Carlo Percent Relative Bias of the Adjusted Estimator using the Tree versus the 
Logistic Regression Nonresponse Simulation Scenarios with all CPS Frame Variables.  

 
  

Figure A2:  Mean Square Error of the Adjusted Estimator using the Tree versus the Logistic 

Regression Nonresponse Simulation Scenario with all CPS Frame Variables.  Values less than 100 

indicate less mean square error than using the unadjusted weights, and values greater than 100 

indicate higher mean square error than using the unadjusted weights.  

Tree Regression Nonresponse Simulation Logistic Regression Nonresponse Simulation 
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