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Abstract 
Two of the timeliest U.S. economic indicators are initial claims and continuing claims from 
the Unemployment Insurance (UI) program. These series are collected and processed 
weekly by the States, and are seasonally and calendar adjusted by the Bureau of Labor 
Statistics for release by the Department of Labor. Weekly data are difficult to seasonally 
adjust as the series do not have constant periodicity. Seasonal adjustment is carried out 
utilizing a locally-weighted regression approach originally described in Cleveland (1993). 
Week-to-week changes can be both relatively large and variable, so the changes can be 
difficult to interpret. To account for this problem, we utilize the parametric bootstrap. 
Standard errors for week-to-week changes from this method are analyzed for both initial 
claims and continued claims series. 
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1. Background

The Employment and Training Administration (ETA) of the U.S. Department of Labor 
publishes a press release each Thursday with seasonally adjusted data from the 
Unemployment Insurance (UI) program. Initial claims are reported for the previous week 
ending on Saturday. With only a week’s time lag, the initial claims series is one of the 
timeliest indicators for the U.S. economy. Continued (insured) claims are reported a week 
later. 

The claims series are seasonally adjusted by the Bureau of Labor Statistics. Seasonal 
effects for initial claims are often strong as seen in Figure 1. Seasonality is strong at the 
beginning of the year and slowly declines until a rise around the July 4th holiday. 
Seasonality then dampens until November when claims begin to rise again. Continued 
claims have a similar, but less intense pattern (see Figure 2). During a recession, the number 
of claims tends to rise quickly. 

Unfortunately, week-to-week changes for both series can be highly variable and can 
confound data users. ETA publishes a four-week moving average for both seasonally 
adjusted series, but that does little to solve our problem. This paper directly addresses that 
problem by estimating confidence intervals for the week-to-week changes. 

The method used to seasonally adjust the weekly series is explained in Section 2. There is 
a brief discussion in Section 3 on ways to estimate variances for UI data. Results are given 
in Section 4 and Section 5 offers a brief summary. Figures are in the appendix. 

1 Any opinions expressed in this paper are those of the authors and do not constitute policy of 
the Bureau of Labor Statistics. 



2. Seasonal Adjustment of Weekly Data

The program utilized by BLS for seasonally adjusting weekly UI data is based on work by 
Pierce, Grupe, and Cleveland (1984). The first weekly seasonal adjustment program used 
at BLS is described by Cleveland (1986) and is based on the Pierce, et al., paper. A 
regression model with trigonometric, holiday and outlier variables produces fixed seasonal 
factors. In 2002, BLS moved to a new program by Cleveland (1993) that uses the same 
regression approach as before, but adds locally-weighted regressions to allow for stochastic 
seasonality. This was especially important during the recent Great Recession since the 
sudden changes in economic activity appeared to affect seasonality. The new approach is 
demonstrated for UI data in Cleveland and Scott (2007). BLS has modified the latest 
program by Cleveland to make the program easier to execute, account for possible level 
shifts, and to add more plots and diagnostics (Evans and Byun 2010). We refer to the 
revised program as MoveReg for “moving regressions.” 

Our basic model is here: 

t t t t t tY T S I H O=
where Yt is the observed series (at time t), T is the trend component, S is the 
seasonal component, I is the irregular component, H is the holiday component, 
and O is the outlier component. In practice, the log transformed series is first 
differenced, and the trend component is not explicitly modeled. 

There are other approaches to seasonally adjust weekly data. Harvey, Koopman, and Riani 
(1997) use a structural time series model with splines. Recently, BLS has explored using a 
state-space model for the UI series. The Census Bureau has also performed similar research 
(Monsell and McElroy 2016) with promising results. An advantage to using structural time 
series models is that the trend and irregular components are explicitly modeled in addition 
to the seasonal, holiday, and outlier components. 

Seasonal adjustment of monthly and quarterly data can be challenging depending on the 
characteristics of the series. However, seasonally adjusting weekly data can be even more 
difficult. As weekly data do not have constant periodicity, standard seasonal adjustment 
programs such as X-13ARIMA-SEATS cannot be used. The number of weeks vary in a 
year with either 52 or 53. Regardless of the ending day that is used to define a week, the 
position of each day changes from year to year. This means that even if seasonality is 
deterministic, the seasonal factors will show variability from year to year. The solution to 
this problem with weekly data is to represent seasonality with sine and cosine functions 
that represent the seasonality of each day of the year. Leap years are handled by changing 
the denominator of the sine and cosine terms from 365 to 366. 

Another problem with seasonally adjusting weekly data is that all holidays can affect the 
data and will be “moving.” For example, Thanksgiving can fall in either week 47 or 48 and 
Easter can range from week 12 to week 18. The day of the week that a holiday falls can 
have additional effects. For example, for the initial claims data, when July 4th falls on a 
Wednesday or when Christmas is on Friday, the number of claims filed for those weeks 
can vary in addition to the normal effects. A “late” Thanksgiving affects the continued 
claims data. The effect of the New Year holiday in initial claims data can spread over the 
first two weeks of the year depending on the day of the week where the New Year falls. It 
is always important to have a reasonably long time series for weekly data in order to capture 
the numerous holiday effects since they do not occur every year. 



3. Variance Method

The locally-weighted regression model described above is somewhat complicated. Thus, it 
may not be obvious as to how to calculate variances. One possible method is described in 
Burck and Sverchkov (2001). This approach starts by utilizing the impulse response 
method to calculate observation weights. Once the weights are available, variances are 
calculated in a similar manner as shown in Pfeffermann and Sverchkov (2014). This is still 
work in progress. 

A straightforward way to calculate variances for the UI series is to use the bootstrap. One 
could use either a nonparametric or parametric bootstrap, and they should give similar 
results using the same underlying model assumptions. Since we already have a simple 
model, we decided to use the parametric approach which is fairly easy to implement. 

Our model is: 
  /t t tS CY SA=

where St is the seasonal component (at time t), CY is the “cleaned” observed series 
(cleaned of outliers and holidays), and SA the “clean” seasonally adjusted series. Our 
assumptions for the model are that ln(Tt) is locally linear and that ln(It) is white noise. 
Note that under these assumptions 
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There are several steps in order to get the variances we need. 
1) We use data for the official seasonal adjustments from the last week in January in

1988 through the last week of January of the current year. In this case, we will use
data from January 1988 through January 2015 (N=1410).

2) The logarithm of the observed series is differenced.

The MoveReg program starts with a global regression to estimate holiday and outlier 
effects. The original series is logged to help stabilize the seasonal factors and differenced 
to remove any trend effects. The seasonal component is estimated with sine and cosine 
terms keyed to the day of the year. Holiday effects are considered to be special seasonal 
effects and are removed from the final seasonally adjusted series. The holidays can have 
varying weights though some are simple dummy variables. Outliers are modeled as dummy 
variables, and temporary level shifts are treated with strings of additive outliers. Testing 
determines the number of sine and cosine frequencies since all are not needed in the model. 
Locally weighted regressions by year allow for stochastic seasonal coefficients as detailed 
by Cleveland and Scott (2007). 

Currently, seasonal adjustment in the current year is done by the projected factor method. 
The seasonal factors for each series are forecasted out a year and these factors are applied 
to new data as they become available. Because the weekly production schedule is tight, 
ETA is hesitant to move to concurrent seasonal adjustment which requires running 
MoveReg each week to use current data. There has also been some concern that the 
numerous holiday effects could lead to issues with concurrent adjustment. However, Evans 
(2012) showed that concurrent adjustment would actually produce smoother seasonally 
adjusted UI series with lower revisions even around holidays. 



3) Using the coefficients of the official seasonal adjustment runs, the observed series
is cleaned of holidays and outliers.

4) Seasonally adjust the logged transformed and differenced CY .
5) Estimate the parameter 2σ  as follows:
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Plots for the logged and differenced seasonally adjusted series are in Figures 3 
and 4. Note that they are essentially normally distributed. Since the seasonally 
adjusted series is basically T + I, differencing the seasonally adjusted series will 
effectively leave the logged irregular component as our bootstrap. 

6) Generate B independent bootstrap series of length N-1. Multiply
1

2
σ  by a

random variate from a standard normal distribution and multiply by logged CY. 
We find B=1000 is sufficient for both series, so our bootstrap matrix is 
1409x1000. 

7) Variances are calculated by observation (row of the bootstrap matrix):
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8) Calculate variances for week-to-week changes as above (but with  

1t tSA SA −− )
by row using the usual 1.96 Var±  formula.

9) Calculate symmetric 95% confidence intervals (CIs) for historical week-to-week
change series by row.

10) Forecast CIs for the current year by regressing time on last year’s bounds.

Note that we originally estimated CIs using projected seasonal factors for each bootstrap 
series. However, it was clear that the resulting CIs were too noisy and that forecasts 
should be better. 

4. Results

Logged week-to-week changes for initial claims starting in 2006 are in Figure 5. A 
summary of the number of significant changes is in Table 1. About 13% of the week-to-
week changes are significant for the historical period, compared to almost 30% during the 
forecast period. It is likely that concurrent seasonal adjustment will help reduce the number 
of significant changes in the current year, and we plan to test this shortly. 

Table 1: Number of Significant Week-to-Week Changes 
Seasonally Adjusted Initial Claims 

Time Period Total 
Observations 

Significant Changes Percent 
Significant 

All 1461 200 13.7 
Historical 1409 185 13.1 
Forecast 52 15 29.9 



Time Period Total 
Observations 

Significant Changes Percent 
Significant 

All 1461 139   9.5 
Historical 1409 133   9.4 
Forecast 52 6 11.5 

Since the data are log transformed in the model, it is natural and statistically preferable to 
use those data to estimate the bounds. However, since the week-to-week changes are 
reported in levels, it is possible that data users will prefer to see the bounds shown in levels 
as well. These results are shown in Figures 7 and 8. The number and timing of significant 
changes are almost the same. One difference is that the significance bounds follow the level 
of the series. 

5. Summary

Overall, the CIs appear to be reasonable and useful. However, the bounds for the 
projected period could be improved. It is also important to make more runs for the last 
few years with preliminary data created by projected factors and compare those bounds 
with those from historical runs. 

An obvious way to improve the projected bounds is to move toward concurrent 
seasonal adjustment. Implementing concurrent adjustment will also reduce 
revisions and week-to-week changes. Work will continue in this area. 
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An interesting change in the initial claims series occurred in November of 2012 and is 
marked by “Sandy” for Superstorm Sandy which hit the east coast of the U.S. Other 
significant events that strongly affected initial claims were 9-11 in 2001 and Hurricane 
Katrina in 2005. These events accounted for about 14 of the 185 significant changes in the 
historical period. 

Logged week-to-week changes for continued claims starting in 2006 are in Figure 6. A 
summary of the number of significant changes is in Table 2. About 9% of the week-to-
week changes are significant for the historical period. In this case, only about 12% are 
significant during the forecast period. This is not surprising since continued claims tend to 
show less volatility than initial claims. Continued claims have much fewer outliers than 
initial claims and most of those are due to Hurricane Katrina, so we can only attribute 2 of 
the 139 significant changes during the historical period to known events. 

Table 2: Number of Significant Week-to-Week Changes 
Seasonally Adjusted Continued Claims 



Appendix 

Figure 1: Initial Claims 

Figure 2: Continued Claims 



Figure 3: Initial Claims 

Figure 4: Continued Claims 



Figure 5: Logged Transformed Week-to-Week Changes with 95% Bounds 
Initial Claims, (NBER Recession in Gray) 

Figure 6: Logged Transformed Week-to-Week Changes with 95% Bounds 
Continued Claims, (NBER Recession in Gray) 



Figure 7: Week-to-Week Changes with 95% Bounds 
Initial Claims, (NBER Recession in Gray) 

Figure 8: Week-to-Week Changes with 95% Bounds 
Continued Claims, (NBER Recession in Gray) 
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