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1. Introduction: Probability-Proportional-to-Size Designs 
 

In the design of large-scale surveys, one often uses unequal probabilities of selection for 

sampling within strata. Standard derivations (e.g., Cochran, 1977, Section 9A.3) indicate 

that under idealized conditions for estimation of a population total for a high-priority 

survey variable Y, the selection probability for a unit i would be proportional to the 

corresponding unit value Yi. In general, the values Yi are not known during the design 

phase of a study. For such cases, one often uses a “probability proportional to size” 

design in which the unit sizes are set equal to a gross size measure that is available on the 

sampling frame. In establishment surveys, common examples include the total number of 

employees, the total wages paid, or the total sales of a given unit i in a specified reference 

period. 

However, in some cases standard gross-size measures may not provide good 

approximations to the idealized probabilities that would be proportional to the target 

variables Yi. For cases that involve this type of imperfect frame information, one may 

(under conditions) minimize the variance of a standard probability-weighted expansion 

estimator of a population mean or total by using selection probabilities proportional to the 

unit-level size measures 
 

si  =   {[µ(Xi)]2 + [a(Xi)]2 }1/2 (1.1) 

where µ(Xi) and [a(Xi)]2 are the conditional mean and variance, respectively, of Yi 

given the available frame information Xi. See, e.g., Godambe (1955), Brewer (1963), 

Thomsen et al (1986), Kott and Bailey (2000), Holmberg and Swensson (2001) and 

references cited therein. 
 

Practical use of a size measure based on expression (1.1) depends on (a) timely 

information available to estimate the functions µ(Xi) and [a(Xi)]2 ; (b) the adequacy of 

fit in estimation of these functions; and (c) consistency of the idealized size measures 

across different survey variables Yi. 
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The remainder of this paper addresses some aspects of issues (a) through (c) through 

numerical examples and simulation work. Section 2 presents examples involving three 

industries and several forms of size measures defined by the general expression (1.1). 

Section 3 presents the results of a related simulation study. Section 4 reviews the main 

ideas presented in this paper, and suggests some potential areas for future work. 

 
2. An Example: Frame Information for An Establishment Survey 

 
2.1. Data from the BLS Quarterly Census of Employment and Wages 

 

To explore the issues (a) through (c) outlined in Section 1, we carried out an empirical 

study based on data from one state as provided in the BLS Quarterly Census of 

Employment and Wages (QCEW). The QCEW forms the basis for several large-scale 

establishment surveys managed by the Bureau of Labor Statistics. However, to allow a 

direct evaluation of competing size measures, the unequal-probability designs considered 

in this paper are simpler than those used in the BLS establishment surveys. 

We considered three industries at the state level, and focused on three quarterly measures. 

First, e1i is the total employment in unit i for quarter 1; this is an example of a gross size 

measure that one commonly uses in pps designs. Second, e2i is the total employment in 

unit i for quarter 2. In addition, Y1i and Y2i are the total payroll amounts for unit i in 

quarters 1 and 2, respectively. 

To avoid confidentiality issues, this study omitted units that were beyond the 95th 

percentile in any of their e or Y values. Table 0 presents basic descriptive statistics for 

the resulting trimmed populations. Note especially that each of the variables have 

skewed distributions, and that industry B has a somewhat larger skewness coefficient 

than industries A and C. 

2.2 Regression Models for Mean and Variance Functions 
 

For each industry, we fit several regression models for use in construction of the size 

measure Si . First, we considered a simple linear regression of 
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Second, we fit two separate variance function models, based on the squared residuals 

from the initial model fit. In the first variance model, 

   2 1i 
2  

=    0 +    1  2i +   i (2.2) 

we regressed the squared residual from model (2.1) on the predictor from the initial fit. 

In the second variance model, 

   2 1i 
2  

=    0 +    i (2.3) 
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we regressed the squared residual from model (2.1) on a simple intercept alone. In 

addition, we tried a direct regression of the square of 

intercept: 

y2 on the square of y1 , with no 

 2  =  w1    2 + oi (2.4) 
2i 1i 

 

Table 1 presents the results of these regression fits for industry A. Note especially that the 

initial mean-function regression has a relatively high value of R2, equal to 0.872. In 

contrast with this, the first variance-function model has a relatively small value of R2, 

equal to 0.138. Tables 2 and 3 presents the results of the fits of the regression models 

(2.1) through (2.4) for industries B and C, respectively. The results are qualitatively 

similar to industry A. 

Finally, we also fit similar models that used the outcome variable y2 , but used e1 as the 

predictor instead of y1 . 

 2i  = {J0  +  {J1e1i  +  2 1i (2.5) 

 
   2 1i    =    0 +    1  2i +   i (2.6) 

 
   2 1i    =    0 +    i (2.7) 

 
 2  =  w1e2  + oi (2.8) 

2i 1i 
 

Tables 4 through 6 present the numerical results of these models fits for industries A, B 

and C, respectively. Note that for a given industry, the numerical results for models (2.5) 

through (2.8) tend to be qualitatively similar to those presented for models (2.1) through 

(2.4), but with somewhat lower R-squared values. 

2.3 Four Size Measures 
 

Based on the results of Section 2.2, we considered four size measures: 
 

Measure a is the simple gross size measure e1 , the employment total in the baseline 

quarter. Measure b is the size measure si computed from the mean-function model (2.1) 

and the complex variance function model (2.2). Measure c is the size measure si 

computed from the mean-function model (2.1) and the simpler intercept-only variance 

function model (2.3). Measure d is the size measure si computed from the direct model 

(2.4) for the regression of 2 on 2. 
2 1 

 

Figure 1 shows a plot of y2 and the final three size measures against the gross size 

measure e1 , based on a one-in-thirty subset of the original full population for industry B. 

Note that there is one prominent outlier. In addition, the final three size measures tend to 

be relatively close together. Figure 2 shows the corresponding plot for industry B with 



 

 

 

both axes presented on the logarithmic scale. Note especially that for several cases, the 

log of the size measure b is equal to zero. This corresponds to cases in which the 

complex variance function fit led to negative values, which were truncated to the value 

zero on the log scale. 
 

Figure 3 shows a plot of y2 and the final three size measures against the gross size 

measure e1 , based on a one-in-three-hundred subset of the original full population for 

industry C. Figure 4 shows the corresponding plot for industry C, based on a one-in- 

three-hundred subset of the original population. The plot is qualitatively similar to the 

corresponding plot for industry B, with one important exception: for size measure b, 

there are fewer values truncated to zero on the log scale, and thus fewer problems with 

lack of fit. 

2.4 Direct Evaluation of Design Effects from Finite Population Quantities 
 

For each of the three populations identified in Section 2.1 and each of the four size 

measures defined in Section 2.2, we evaluated the efficiency of the associated 

“probability proportional to size” design through computation of the design effect ratios, 

  =      Y l    s)/  Y ls s) (2.9) 

where Y l s) is the variance of the standard probability-weighted estimator of a 

population total under a probability-proportional-to-size design, as given in expression 

(9A.11) of Cochran (1977) with a sample of size 1; and Y ls s) is the variance of a 

standard expansion estimator of a population total under simple random sampling with a 

sample of size 1. 

Table 7 presents the resulting design effect ratios for estimation of the mean or total of y2 

Note that for size measures a, c and d, the design effects are all less than one.  In 

addition, the more refined size measures produce design effects that are approximately 

one-third of the design effects produced with the gross size measure a. In other words, 

use of the more refined size measures can produce substantial efficiency gains, relative to 

those obtained from use of the gross size measure. However, we obtained a different 

result from the size measures b computed from the complex variance model (2.2). This 

complex model produced a small number of extreme values, which in turn led to very 

large design effects. Thus, caution is warranted in the possible use of these more 

complex variance models to produce a size measure. 

Table 8 presents related design-effect results for estimation of the population total or 

mean of the second-quarter variable e2 . This was a variable for which the size measures 

b, c and d were not originally intended. Thus, the design effects in this table reflect the 

efficiency properties that would be obtained for variables that were not the top priority in 

design optimization. As observed in the previous table, direct use of the size measure b is 

problematic. On the other hand, use of the refined size measures c or d led to moderate 



 

 

 

losses of efficiency in estimation for the second-quarter variable e2 , relative to use of the 

gross size measure a. Thus, if we use the refined size measures c or d, we obtain 

substantial efficiency gains for estimation of the mean or total of the high-priority 

variable y2 , while paying a moderate price in efficiency loss for the lower-priority 

variable e2 . 

 
3. A Simulation Study 

 

As a complement to these calculations of exact design effects presented in Section 2.4, 

we carried out a simulation study. For each industry and each size measure, we produced 

10,000 replications of a probability-proportional-to-size selection with sample size equal 

to 1. Based on the simulation distributions of the resulting estimators, we computed two 

efficiency measures. 

The first efficiency measure was similar to the design-effect ratio defined by expression 

(2.9), but with the numerator and denominator both computed from the simulation-based 

variances. The second efficiency measure was defined similarly, but with the variances 

replaced by the squares of the interquartile ranges of the respective estimators. This 

second efficiency measure is relatively insensitive to outliers. 

Table 9 presents the simulation-based design effect results for estimation of the mean of 

y2 , for industries A, B and C. Note that in this case, all three of the refined size 

measures – b, c and d – produced design effects that were substantially less than the 

design effect obtained through use of the gross size measure a. Table 10 presents the 

corresponding results for estimation of the mean of the variable e2 . 

 
4. Discussion 

 

4.1. Summary of Ideas and Numerical Results 
 

In summary, this paper has explored the use of various measures of unit size in the 

implementation of “probability proportional to size” sample designs. In keeping with 

some previous literature, we have contrasted use of simple gross size measures with more 

refined size measures based on estimation of mean and variance functions for a survey 

variable y, conditional on a vector of known frame variables. 

The paper has placed primary emphasis on an empirical study of the properties of the 

resulting point estimators. That study identified some cases in which one may obtain 

substantial efficiency gains for some regression-based size measures, relative to a 

standard gross-size measure. Thus, for cases is which we have one higher-priority survey 

variable for which we can develop good mean-function and variance-function 

approximations, it is worthwhile to consider size measures based on these 

approximations, instead of gross size measures. 



 

 

 

 

However, the empirical study also indicated the potential for sensitivity to lack of fit, 

especially in estimation of a complex variance function for use in the refined size 

measure. 

4.2. Possible Areas for Future Research 
 

There are several potential extensions of this work. For example, under forms of the 

designs considered here, one could explore the properties of more refined point 

estimators based on ratio estimation and calibration weighting. In addition, one could 

consider cases in which one must account for measurement errors in either the survey 

variable or the frame variables. 
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Table 0: Descriptive Statistics for Three Industries 
 

 

 
  Industry   

Parameter Variable A B C 
     

Population Size ------- 123 2978 27,163 

Mean E1 

 
Y1 

5.59 

 

26,733 

23.74 

 

126,078 

16.16 

 

59,437 

 
Y2 27,623 125,654 58,939 

Standard Deviation E1 

 
Y1 

5.36 

 

26,878 

30.84 

 

187,944 

15.23 

 

60,590 

 
Y2 29,394 192,247 60,266 

Skewness E1 

 
Y1 

1.75 

 

1.35 

2.46 

 

2.80 

1.35 

 

1.61 

 
Y2 1.45 2.88 1.60 



 

 

 

Table 1: Regression Model Fits for y2 Using Predictor y1 for Industry A 

 

Models for y2 Intercept 
(Std Error) 

Slope 
(StdError) 

R2 MSE 

Mean Function 

Model (2.1) 

 

323 (1346) 
 

1.021 (0.036) 
 

0.872 
 
1.12x109 

Variance Function 

Model (2.2) 

Model (2.3) 
5.21x107  6.98x107 
1.10x107 (4.9x108 ) 

 

2086 (1796) 

 
  - 

 

0.011 

 
  - 

 
2.96x1017 

2.97x1017 

Direct Model for 

y2 : Model (2.4) 
2 

 

7096 (8725) 
 

0.995 (0.113) 
 

0.838 
 
1.96x1018 

 
 

Table 2: Regression Model Fits for y2 Using Predictor y1 for Industry B 

 

Models for y2 Intercept 
(Std Error) 

Slope 
(Std Error) 

R2 MSE 

Mean Function 

Model (2.1) 

 

525(1027) 
 

0.992 (0.005) 
 

0.941 
 

2.17x109 

Variance Function 

Model (2.2) 

Model (2.3) 
1.01x109 2.60x108 

2.17x109  2.32x109 

 

25280 (1157) 

 

------- 

 

0.138 

 

------- 

 
1.39x1020 

 
1.61x1020 

Direct Model for 

y2 : Model (2.4) 
2 

 

66207 (11412) 
 

0.911 (0.016) 
 

0.886 
 

3.44x1021 

 
 

Table 3: Regression Model Fits for y2 Using Predictor y1 for Industry C 

 

Models for y2 Intercept 

(Std Error) 

Slope 
(Std Error) 

R2 MSE 

Mean Function 

Model (2.1) 

 

2412 (150) 
 

0.951 (0.002) 
 

0.914 
 

3.11x108 

Variance Function 

Model (2.2) 

Model (2.3) 
9.52x107 1.25x107 

3.11x108 9.04x106 

 

6898 (151) 

 

------- 

 

0.071 

 

------- 

 
2.06x1018 

 
2.22x1018 

Direct Model for 

y2 : Model (2.4) 
2 

29024 (939) 0.778 (0.005) 0.881 2.86x1019 



 

 

 

Table 4: Regression Model Fits for y2 Using Predictor e1 for Industry A 

 

Models for y2 Intercept 
(Std Error) 

Slope 
(Std Error) 

R2 MSE 

Mean Function 

Model (2.5) 

 

2545 (2222) 
 

4483 (287) 
 

0.668 
 

2.89x108 

Variance Function 

Model (2.6) 

Model (2.7) 
5.01x107  8.72x107 

2.85x108 5.98x107 

 

8492(2388) 

 

------- 

 

0.095 

 

N/A 

 
4.01x1017 

 
4.40x1017 

Direct Model for 

y2 : Model (2.8) 
2 

------- 
2.04x107 1.52x106  0.596 4.85x1018 

 
 

Table 5: Regression Model Fits for y2 Using Predictor e1 for Industry B 

 

Models for y2 Intercept 
(Std Error) 

Slope 
(Std Error) 

R2 MSE 

Mean Function 

Model (2.5) 

 

-7545 (1937) 
 

5611 (50) 
 

0.810 
 

7.02x109 

Variance Function 

Model (2.6) 

Model (2.7) 
9.53x108 8.56x108 

7.01x109 7.21x108 

 

63399 (4004) 

 

------- 

 

0.078 

 

N/A 

 
1.43x1021 

 
1.55x1021 

Direct Model for 

y2 :  Model (2.8) 
2 

 

------- 3.34x107 4.08x105 
 

0.692 
 

9.33x1021 

 

 

 
 

Table 6: Regression Model Fits for y2 Using Predictor e1 for Industry C 

 

Models for y2 Intercept 

(Std Error) 

Slope 
(Std Error) 

R2 MSE 

Mean Function 

Model (2.5) 
 

3753 (269) 
 

3415 (12) 
 

0.745 
 

9.26x108 

Variance Function 

Model (2.6) 

Model (2.7) 
3.85x107 2.75x107 

9.26x108 1.88x107 

 

15053(350) 

 

------- 

 

0.064 

 

N/A 

 
9.02x1018 

 
9.63x1018 

Direct Model for 

y2 : Model (2.8) 
2 

 

------- 1.31x107 5.29x104 
 

0.692 
 

7.41x1019 



 

 

 

 
 

Table 7: Design Effects for Estimation of Y2 . Effects Computed Directly 

from Population Values Based on Expression (2.9) 

 

 
 Industry   

Size Measure A B C 

a (employment counts e1 ) 0.3398 0.1562 0.3240 

b (predicted y2 with 

complex variance 

model) 

0.1462 233 
Large 

33.2 
Large 

c (predicted y2 with 

intercept-only variance 

model) 

0.1690 0.0571 0.0952 

d (direct regression of y2 
2 

on y2 ) 
1 

0.1236 0.0430 0.0838 

 

 

 

 
 

 

Table 8: Design Effects for Estimation of E2 . Effects Computed Directly 
 

from Population Values Based on Expression (2.9) 

 
 Industry   

Size Measure A B C 

a (employment counts e1 ) 0.0738 0.0412 0.1407 

b (predicted y2 with 

complex variance model) 

0.1860 404 
Large 

142 
Large 

c (predicted y2 with 

intercept-only variance 

model) 

0.1884 0.0951 0.1968 

d (direct regression of y2 
2 

on y2 ) 
1 

0.2238 0.0695 0.1819 



 

 

 

 
 

Table 9: Design Effects for Estimation of Y2 . Effects Estimated from Simulation 

Based on Repeated Sampling Under Specified Designs 

  Industry   

Size Measure Efficiency 
Measure 

A B C 

a (employment counts e1 ) Variance 0.3505 0.1484 0.8186 

 
 IQR 

2

 
0.2343 0.2563 0.1258 

b (predicted y2 with Variance 0.1455 0.0295 0.0649 

complex variance 

model)  IQR 
2

 
0.0285 0.0739 0.0427 

c (predicted y2 with Variance 0.1638 0.0575 0.0958 

intercept-only 

variance 

model) 
 IQR 

2

 
0.0627 0.1679 0.0674 

d (direct regression of 

y2   on  y  and  y2 ) 
2 1 1 

Variance 0.1260 0.0419 0.0833 

 IQR 
2

 
0.0353 0.1491 0.0752 

 

 

Table 10: Design Effects for Estimation of E2 . Effects Estimated from Simulation Based on 

Repeated Sampling Under Specified Designs 

 

  Industry   

Size Measure Efficiency 
Measure 

A B C 

a (employment counts e1 ) Variance 0.0787 0.0399 0.7714 

 
 IQR 

2

 
0.0177 0.0163 0.0141 

b (predicted y2 with Variance 0.1906 0.0777 0.2001 

complex variance 

model)  IQR 
2

 
0.2367 0.1363 0.1096 

c (predicted y2 with Variance 0.1875 0.0944 0.1939 

intercept-only variance 

model)  IQR 
2

 
0.2219 0.2100 0.1363 

d (direct regression of y2 
2 

on y and y2 ) 
1 1 

Variance 0.2203 0.070 0.1711 

 IQR 
2

 
0.2139 0.3759 0.1187 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 




