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Abstract 
 

The technique of latent class analysis relies on a number 
of model assumptions which might be violated by the 
underlying process being investigated.  This study is to 
determine the reliability of the analysis done on four stage 
Markov Latent Class models containing the classification 
of individuals in one of two indicator categories.  The 
estimation is done using the EM algorithm on simulated 
data under specified model assumptions where those 
assumptions are violated to varying degrees. 
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1. Introduction 
 

In recent research, Tucker et al (2003) employed Markov 
Latent Class Analysis (MLCA) in order to estimate the 
extent of underreporting on the Consumer Expenditure 
Interview Survey (CEIS).  Using second order Markov 
Models the authors used a single indicator at four 
different waves of an interview to estimate a 
complimentary latent or true variable for the same waves.  
The indicator was the report of a purchase in that 
interview wave, while the latent variable was 
hypothesized to be the "true" or actual purchase of a given 
commodity.  Many different commodities were evaluated 
and results indicated that routine monthly purchases such 
as utilities had a much higher accuracy rate (probability 
that purchase was reported given an actual purchase) than 
commodities such as shoes or household furnishings, that 
are purchased less routinely.  While these results are 
reassuring because they are in concert with the author�s 
intuition, the models, in order to be estimated, make a 
number of assumptions that are likely violated.  The 
purpose of this work is to use simulated data to evaluate 
the impact of violating two key assumptions of the model 
used in Tucker et al. 
 

2. The Consumer Expenditure Survey 
 

The CEIS is a rotating panel survey, where consumer 
units (CUs, usually households) are interviewed in five 
separate quarters about there purchases in the previous 
quarter.  Data regarding purchases in the first interview 
are typically not used in analysis as this interview is 
treated as a "bounding" interview to avoid telescoping.  
Consistent with this practice Tucker et al. estimated  
models using the last four waves of the survey.  The 

interview iteself is quite long and burdensome so that 
reporting error is likely.  Approximately 8,000 CUs are 
interviewed annually (Tucker et al. combined six years of 
data). 
 

3. Second Order Markov Model and Model 
Assumptions 
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The probabilities in (equation 2) and (equation 3) define 
the dynamics of the underlying latent variables as they 
propagate through time.  We assume independent 
measurement (and/or reporting) error in each of the 
manifest variables, given by the components of, 
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corresponding to an observation of each component of Li.  
These errors are defined by  
 

Equation 4 
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Let 

Equation 5 
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3.1 Likelihood Function 
 

Equation 6 
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The probabilities of b, c, and d are similar.  Next we find 
 

Equation 8 
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In addition, to those just described, two assumptions were 
made in order to estimate the second order Markov model 
in Tucker et al.  First it was assumed that the relationship 
of the indicator to the latent variable was stationary or did 
not change over time, that is:  

Test Assumption 1  
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This assumption is likely to be violated.  Analysis of 
patterns of expenditure reports over the four panel waves 
show differences in the total amount of expenditure 
reported, especially in the third quarter where expenditure 
reports are typically low.  However, a second order 

Markov model with one indicator per latent construct 
cannot be estimated without assuming some stationarity.  
The second assumption made by Tucker et al. to be 
evaluated in this work is the assumption that no false 
positive reports of expenditures are given by the 
respondent or,  

Test Assumption 2 
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While it is certainly uncommon for CUs to report 
purchases they did not make, it probably does happen.  
For Tucker et al. fixing the probability of false positives 
to zero greatly simplified the estimation task by creating 
"partially latent" variables - the advantages gained 
outweighed the possibility of bias in the estimates. 
 

4. Design of Simulations 
 

The current work uses simulated data to examine the 
assumptions made by Tucker et al.  However, in order to 
make the results more general, a second order Markov 
latent class model with a single indicator of a latent 
construct at each of four time points without covariates is 
estimated.  This can be viewed as a simplified version of 
the model used in Tucker et al.    
 
The data on which this model is estimated is varied in 
three ways.  Firstly, the sample size is varied (n = 250; 
500; 1,000; 2,000; 4,000).  Sample sizes in Tucker et al. 
were on the order of 3,000 to 5,000.  Initially, the authors 
of this work believed that in order to observe large biases 
in estimates due to violations of the assumptions, smaller 
sample sizes would be needed.  This proved not to be the 
case. 
 
Secondly, data is generated that violates the stationarity 
assumption of the model.  The third quarter reporting 
error was increased in proportion to the reporting error of 
the other three quarters.  The accuracy rate, P(a=1|w=1) 
for the first, second, and fourth quarters is set to 0.75 
(based on work by Tucker et al.), the third quarter 
probability is adjusted such that P(c=1|y=1) = .75a where 
a=(0.8, 0.85, 0.9, 0.95, 1.0).  Therefore, the measurement 
error for quarters one, two, and four id defined as:  
 
P(a=0|w=1) = P(b=0|x=1) = P(d=0|z=1) = 0.25 
 
while the measurement error for quarter three varies: 
 
P(c=0|y=1) = {0.25, 0.2875, 0.325, 0.3625, 0.4} 
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Finally, data are generated that violate the model's false 
positive assumption.  The degree that the data violate this 
assumption is based on the probability of a report being 
given when no purchase was actually made P(a=1|w=0).  
This probability, which we call 1-q was varied from 0 to 
.2, such that q={0.8, 0.85, 0.9, 0.95, 1.0).  Therefore, the 
data varied from 20 percent of positive reports being false 
(very unlikely in reality) to no positive reports being false. 
 
The model is estimating using lEM under R2.4.1.  
Consistent with Tucker et al. starting values were 
supplied for both the transition probabilities and the 
measurement error probabilities to aid with convergence.  
These starting values were either 0.6 or 0.4 depending on 
if the value in the data was above or below 0.5.  The 
convergence criteria was set to 1x10-6.   
 
For each of the three conditions that are varied (n, a, and 
q), 1,000 iterations were conducted where simulated data 
were generated.  However, in order to obtain more stable 
estimates (and avoid the some of the pitfalls of local 
maxima) each of the 1,000 iterations was estimated ten 
times and the best fitting model, as determined by the 
value of the BIC L-square was selected. Thus, a total of 
1,250,000 estimates were produced, 125,000 iterations 
were conducted,  for 125 different combinations of a, q, 
and n. 
 
A number of measures were recorded, including fit 
statistics (both the BIC and AIC based on L-square or 
Loglikelihood and the dissimilarity index) and distance 
measures derived from parameters set in the simulated 
data compared to those that were estimated (estimated � 
true).  Both the square root of the squared differences 
between the estimated and true and the unsquared 
(signed) distance measures were used in analysis.  In 
addition, these distances were calculated for the entire 
model combined, where all estimated probabilities versus 
their corresponding true values were calculated and 
combined into a single measure.  and the distance of the 
probability of most interest P(a=1|w=1) from the 
estimated to the true. 
 

5. Results 
 

For the sake of brevity the analysis of the data is confined 
to the bias measures.  Future research will examine model 
selection procedures and will therefore examine the 
model fit statistics more rigorously.  In addition, we found 
that measures that estimate the amount of bias in all 
model parameters combined tends to obscure the bias in 
the measure of interest the bias in the reporting accuracy, 
or it�s compliment reporting error.  In addition, bias 
measures based on the squared deviations of the estimated 
minus the true, while helpful, will be ignored in the 
results, because these too obscures the underlying 

distribution of the bias.  Results will then focus on the 
bias in P(a=1|w=1) = q.11. 
 
The authors quickly realized that the variance in the bias 
was larger than expected for n <= 1,000.  Figure 1 shows 
the distribution of the bias of q.11 (or P(a=1|w=1)) by a 
and q for n = 1,000.  Note that for very large departures 
from model assumptions the variance of the distribution 
of the bias is quite large.  Because the value of the bias is 
bounded at a maximum of 0.25 (the true value .75 � the 
maximum probability of 1.0), we see that the mode of the 
histogram is located at this boundary.  Even with data 
where no violations of the assumptions are made (a=1, 
q=1) we can note a relatively large number of points at 
this boundary level.  Because of this problem we choose 
to conduct most of our analysis where n >=2,000. 
 
Figure 2 presents the same histogram for n=4,000.   For 
mild departures in a, and even severe departures in q,  the 
distribution of the bias appears to be somewhat normal, 
but positively skewed.  Where the data does not depart 
from the model assumptions at all we can still discern the 
positive skewness of this distribution.  The authors were 
somewhat surprised at this result, expecting a normally 
distributed, symmetrical result.  Figure 3, presents the 
histogram for the bias in q.11 for n=40,000 and no 
departures of the data from model assumptions.  Note 
that, while the variance is quite small and the skewness is 
greatly reduced, the positive bias remains and is actually 
more pronounced.  The mean of the bias is 0.041. 
 
Figure 4 shows the mean of the bias by a for each level of 
n (each plot is a particular level of n with the bottom left 
n=250 and top right n=4,000).  While the mean bias does 
not vary significantly by a for low n, for higher values of 
n, the bias decreases sharply over a, only to increase 
where a is close to one (where there is no difference in the 
third quarter reporting error.  Figure 5 shows a relatively 
steady decrease in the variance of the bias as a increases. 
 
Firgure 6 shows the mean of the bias by q for each level 
of n.  There are relatively modest decreases in the mean 
bias by q indicating that violations in a are perhaps more 
serious.  Figure 7 shows the variance of the bias by q for 
each level of n.  Note the slight but steady improvement 
in the variance of the bias. 
 
In order to explore the relationship of a and q further, the 
mean of the bias and the mean of the variance were 
calculated for each combination or a, q, and n. Figure 8 
plots the mean of the mean bias by n for all combinations 
of a and q.  Likewise, Figure 9 plots the mean of the 
variance of the bias by n for all combinations of a and q.  
Note the rapid decrease in the variance of the bias over n 
regardless of a and q.  For mean bias, the most striking 
result is the increase in bias with n as a and q approach 1.   
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5. Conlusion 
 
From our findings we conclude the following.  Estimation 
of simple second order Markov models require a sample 
greater than or equal to 2,000.  Sample sizes smaller than 
2,000 appear to be sensitive to even the smallest 
violations in model assumptions, where the estimate of 
measurement error can be hardly assumed to be unbiased.   
 
In addition, it appears that even with no violations in 
model assumptions the estimate for the measurement 
error in second order Markov latent class models will be 
biased.  This is true, even for sample sizes larger than 
40,000.  Therefore, the estimate produced for the 
reporting error appears to be neither unbiased nor 
consistent. 
 
Simple second order Markov models appear to be robust 
to violations in the false positive rate.  Even when 20 
percent of the positive reports were false, the mean bias 
and variance are not significantly larger than those when 
the assumption is not violated. 
 
The models are sensitive to violations in the stationarity 
of measurement error assumption.  Even modest 
departures in the reporting error for the third quarter, as 
compared to other quarters, led to large increases in both 
the variance and mean of the bias.  However, the exact 
nature of this relationship is difficult to obtain because of 
the result that bias exists for no departures from the 
model. 
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