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1. Introduction 
 

For the Current Employment Statistics Program, 
approximately unbiased and stable variance 
estimators are important for the empirical evaluation 
of standard design-based point estimators, and for 
production of related small domain estimators.  In 
some cases, standard design-based variance 
estimators can be relatively unstable, which may lead 
to consideration of alternative variance estimators 
based on generalized variance functions.  This paper 
presents an exploratory analysis of generalized 
variance function models for estimates of total 
monthly employment within domains determined by 
the intersection of metropolitan statistical area and 
major industrial division.  Three topics receive 
principal attention: (a) a detailed description of 
features of the underlying sample design that are 
important in variance estimation; (b)  graphical 
evaluation of potential biases in generalized variance 
function estimators; and (c) omnibus measures of  the 
relative magnitudes of the fixed and random 
components of model lack of fit. 
 
2. Survey Background 
 

The Current Employment Statistics Program is 
conducted by the U.S. Bureau of Labor Statistics as a 
Federal-State cooperative program.  The Bureau 
specifies the design of the survey and operational 
procedures in close coordination with the States.  On 
a monthly basis, the Bureau produces national 
estimates while the States produce State and local 
area estimates.  The data collected for the survey 
includes all employees, production workers, 
production workers hours paid, and production 
workers payroll.  This data is collected each month 
for a sample of approximately 220,000 State 
Unemployment Insurance (UI) accounts from each of 
the 50 States and the District of Columbia.  The 
primary estimate made from the survey is the 
monthly total “all employee” estimate which is 
published approximately 3 weeks after the reference 
period of the collected data.  Because of the 
importance of the payroll employment estimates 

produced and the timeliness of the estimates, the CES 
estimates are recognized as a leading economic 
indicator.  They provide one of the first available 
signs of the state of the economy each month.  The 
estimates are also used as input into many other 
major economic indicators.  

 
3. Sample Allocation and Selection 
 

The sample for the survey is selected each year 
from a sample frame compiled from State 
Unemployment Insurance accounts.  These UI 
accounts are compiled by BLS as part of another 
Federal-State cooperative program known as the 
Covered Employment and Wages (ES-202) Program.  
The data is collected for this program by the States 
under contract with the BLS and consists of over 
7,000,000 individual establishment records 
representing virtually every employer in each of the 
50 States and the District of Columbia. These UI 
account and establishment records include 
information on total employment, Standard Industry 
Code (SIC), and county or area which is used to code 
the Metropolitan Statistical Area code (MSA).  The 
individual establishment records in each UI account 
have the same types of  information coded as that 
collected and coded for the UI account.  Each of 
these establishment records may operate in a slightly 
different SIC and area than that coded for the 
“parent” UI account record.  The UI account parent 
records (the sample unit) on the sample frame are 
stratified  by State into 11 major industrial divisions 
(MID), and 8 employment size classes (Size) for a 
total of 88 strata for each State.  The largest Size 
units (Size 8 – 1,000 or more employees) are selected 
with absolute certainty.  The sample collection 
resources are fixed for each State through an 
administrative process.  The resources required to 
collect the certainty units are removed from each 
State’s total.  The remainder of the sample for each 
State is allocated to the remaining 77 non-certainty 
strata using a program that optimizes the allocation to 
provide the best estimate (smallest sampling error) of 
State total employment.  The input into this process 
includes the estimated resources required to collect 
data from each unit and the over-the-month 
coefficient of variation for employment as calculated 
from the sample frame.  Thus, the sample is truly a 
State based design.  The sample strata are defined by 



State, MID, and Size.  Before sample selection, the 
units within each stratum are sorted by MSA to 
ensure that MSAs have sample units selected from 
them in direct proportion to the number of units in 
the MSA.  The sample is selected from each 
State/MID/Size stratum, after sorting by MSA, by 
taking one random start for the stratum and then 
selecting the remainder of the sample units by taking 
every N/n th unit in the stratum.  This does not ensure 
that all MSAs within the stratum will have sample 
units selected, however, it does ensure that if units 
are selected from a stratum with a probability of ¼ 
and an MSA in the stratum has 4 units, then 1 unit 
from the MSA will be selected.  Within a given State 
x MID x Size stratum, units are sorted only according 
to MSA and an uninformative  permanent random 
number.  This provides a degree of randomness for 
the MSA sample selected within each stratum.  This 
also provides a degree of independence between the 
MSA samples that are used in making MSA/MID 
estimates of all employees.  After sample selection, 
each sample unit is given a sample weight which is 
equal to the inverse of the probability of selection.  
For additional background in the CES sample design, 
see Butani et al, (1997), Werking (1997) and 
references cited therein. 
 
4. Point Estimation 
 

We will limit our discussion of estimation to all 
employment (AE) estimates since that is the principal 
statistic estimated from the survey and the one 
estimate where the need for reliable and stable 
sampling error information is the strongest.  For a 
given month, the individual establishment data is 
collected for all responding establishments within 
each selected UI account.  This provides us the actual 
MID and MSA where the employees in the 
establishment are working.  When making estimates, 
the individual establishment records are used to 
ensure that we place the employees in the appropriate 
industry and area.  The form of the monthly estimate 
of AE is referred to as a weighted link relative 
estimator:  
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where tŶ  = total employment estimate for month t, 

1
ˆ

−tY = total employment estimate for month t-1, 

∑
∈ tMi

tii yw ,  = summed weighted employment total in 

month t for matched sample units at time t and t-1, 
i.e., matched sample units at time t reporting non-

zero data for month t and t-1, and ∑
∈

−
tMi

tii yw 1,  = 

summed weighted employment total in month t-1 for 
matched sample units at time t.  

Once each year the estimates are benchmarked or 
adjusted to the true population employment values 
from the Covered Employment and Wages Program.  
For t=0, the estimator shown above is started with 0Y  

in the place of 1
ˆ

−tY , 0Y being the true population 
value at the benchmark month or month 0. 
 
5. Variance Estimation 
 

Variance estimation is accomplished using 
balanced half-sample (BHS) methodology.  The BHS 
method addresses all of the CES design features 
including stratification, allowances for imputation 
variance and for the finite population correction.  
Details of the procedure are provided in Wolter et al, 
(1998).  The basic form for the variance estimator is: 
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where θ̂  = the full sample weighted link relative 
estimator (4.0) for total employment as described 
above; k is the number of half samples (both the half 
sample and its complement half sample are used); γ  
= a mixing parameter used to weight the half samples 

)1( γ+ , and the complement of the half samples 

)1( γ− , withγ  set = 0.5; and +
αθ̂ = the half sample 

weighted link relative estimator for the α th half 
sample (using the half sample and its complement).  
The weights used for these half sample estimates are 
adjusted for the half sample, imputation, and the 
finite population correction factor. 

The set of half samples used for calculating 
variances for Statewide/All Industry estimates are 
constructed by employing the use of a Hadamard 
matrix with columns representing different strata and 
rows designating different half samples.  The number 
of sample strata in each State is 66 since there are 11 
MIDs and 6 size classes.  (For purposes of variance 
estimation, the largest 3 size classes are collapsed 
together.)  A Hadamard Matrix of order 68 is used to 
designate the half samples.  This results in 68 half 
sample replicates used in calculation of Statewide/All 



Industry estimates, which in turn produce variance 
estimates for the aggregate estimates. 

The estimates that are of interest for our study 
are estimates of total employment in a given MID 
within a specified MSA.  The variances needed for 
these estimates have two purposes.  The first is for 
use by the States in analyzing their small area 
estimates made using the weighted link relative 
estimator (1) described above.  The second is for use 
in weighting the weighted link relative estimate in a 
weighted least squares small area estimator.  In 
calculating the variances for MSA/MID estimates, 
the only remaining stratification uses the 6 combined 
size classes within the MID.  A new Hadamard 
matrix of order 8 is used to define 8 half samples for 
each of the MSA/MID variance estimates.  The 
columns represent the six size strata (the first and last 
colunms are omitted) and the rows designate the 8 
half samples.  The variance estimates calculated have 
only 6 degrees of freedom and display a substantial 
degree of variability. 
 
6. Finding a Generalized Variance Function 
 

Due to the above mentioned stability problems 
for standard design-based estimators, we explored the 
possibility of using generalized variance functions 
(GVFs) for small domains defined by the intersection 
of MSA and MID.  For some general background on 
GVFs, see Johnson and King (1987), Valliant (1987) 
and references cited therein.  Woodruff (1992, 1993) 
considered generalized variance functions for high-
level point estimators from the CES under its 
previous quota-sample design.  The present paper 
restricts attention to results under the CES probability 
design. 

We consider a linear regression (GVF) model 

with )ˆln( mtV as a dependent variable, where mtV̂  is 

the BHS estimate of variance for mtŶ ,  the 

employment estimator for domain m in month t. 
After exploring many alternative GVF models, the 
search was narrowed to the model: 
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where =0mx  the true employment in area m for the 
benchmark period 0;  t = month label for number of 
months from benchmark period;  =mtn  number  of 
responding sample UI Accounts in domain m at time 

t; and, mte = a random error term with expectation 

equal to zero and variance equal to 2
eσ . 

If  ( )2,0~ emt Ne σ , an approximately unbiased 

estimator of the design expectation of mtV̂  is: 
 

)}(ˆˆ)ln(ˆˆ2/ˆexp{ 32010
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mtmemt ntxV γγγγσ ++++≡  (6.1) 
 
In many applications, a variance estimator 

follows approximately a chi-square or lognormal 
distribution. To evaluate the adequacy of these 
approximations, for the CES, we produced the 
quantile-quantile plots displayed in Figures 1 and 2 
for data collected for the Wholesale Trade industry in 
M = 100 MSAs and T = 12 months. Figure 1 displays 
a plot of the quantiles of the relative remainder terms  
 

)ˆ()( *1*
mtmtmtmt VVVd −= −          (6.2)  

(vertical axis) against the corresponding quantiles of 
a standardized chi-square distribution on six degrees 
of freedom.  Note especially that the upper tail of the 
distribution of mtd  is much more extreme than 
would be anticipated under a standardized chi-square 
distribution on six degrees of freedom.  
 

 
Figure 1  

 
Figure 2 presents the corresponding lognormal plots.  
Note that under model (6.0), the lognormal 
distribution provides a better approximation to the 
upper tail of the distribution of mtd . 
       

 
Figure 2 



7.  Diagnostics to Assess the Adequacy of 
Approximation (6.0): Direct Evaluation of 
Remainder Terms 
 

Define the relative remainder terms 
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and their average 
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and variance 
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for a given month t.  Routine arguments then show 

that MS t /2
.  is an approximately unbiased estimator 

of )( tdV .  Thus, under additional regularity 
conditions, the random variables 
 

tt dSM .
2/12

.
1 }{ −−           (7.4)  

 
should follow approximately a t distribution on M-1 

degrees of freedom, provided 0
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In addition, define 
 

∑∑∑∑
=

−

= =

−

=

− ===
M

m
m

T

t

M

m
mt

T

t
t dMdMTdTd

1
.

1

1 1

1

1
.

1 )(  

 

where ∑
=

−=
T

t
mtm dTd

1

1
.  

 
Thus, d  is the average of M independent random 
variables .md .  Therefore, an approximately unbiased 

estimator of )(dV   is   )( 2
..

1SM −    
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means that under additional regularity conditions, 
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should follow approximately a t distribution on M-1 
degrees of freedom, provided 
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Thus, (7.5) provides a summary indicator of the 

overall relative bias, if any, of *
mtV  as an estimator of 

)ˆ( mtVE .  Similarly, expression (7.4) provides month 
specific indications (averaging over metropolitan 

areas) of the overall relative bias of *
mtV . 

We applied the ideas leading to expressions (7.4) 
and (7.5) to data from T=12 months (January through 
December, 2000) for five industries.  Figure 3 
displays the values td  and the corresponding 
approximate pointwise 95% confidence intervals 
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for the month-specific average relative bias terms 
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through E correspond, respectively, to five industries, 
construction, combined construction and mining, 
durables manufacturing, nondurables manufacturing 
and wholesale trade.  For these five industries, M was 
equal to 61, 36, 131, 100, and 100 respectively. The 
values of M vary across industry because we omitted 
from consideration any MSA x MID combinations 
that had less than 12 responding sample UI accounts 
in any month between March 1999 and December 
2000.  Note especially that in all cases, the 
confidence intervals in Figure 3 include the value 
zero, which would be consistent with the 
unbiasedness condition (7.6). 

 
Figure 3 

 



8. Diagnostics for Chi -Square Approximations 
 

Note that (7.4) and (7.5) depend on distributional 
assumptions only in a limited way, e.g., through 
approximate normality of a mean of M independent 
random variables.  If we also assume that 
 

*/ˆ
mtmt VVc  

 
follows a chi-square distribution on c degrees of 
freedom for some c>0, then for a given month t the 

terms )( 2
mtd , m=1, …, M  are independent and 

identically distributed with expectation equal to 
cdV mt /2)( = . In particular, if c=6, then 
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If our estimator ratio */ˆ
mtmt VV   satisfies the chi-

square distributional approximation, then the terms 
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have a mean equal to zero, and an approximately 
unbiased variance estimator is 
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with associated confidence intervals 
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A confidence interval (8.2) that falls entirely 

above zero would correspond to relative differences 

mtd  that are more variable than anticipated under a 
2
6Χ  approximation.  This might be attributable to 

mtV̂  being associated with fewer degrees of freedom 
than the nominal c=6.  On the other hand, this 
phenomenon might also arise from a lack of fit of the 
values )ˆln( mtV  to model (6.0).  Note especially that 

the diagnostics td  and d  are sensitive to systematic 

deviations of *
mtV  from  )ˆ( mtVE , across all areas in a 

given month t, or all months.  In contrast with this, 

LFtR̂  will reflect local deviations 

)ˆ()( *1*
mtmtmt VVV −−  that may not necessarily all have 

the same sign. 

 
Similarly, define the aggregate goodness-of-fit 

measure 
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with associated variance estimator 
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and approximate 95% confidence interval 
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Figure 4 displays the confidence intervals (8.2) 

for January through December of 2000 for the same 
MSAs and the same five industries considered in 
Figure 3, with the same industry labels A through E. 
 

 
Figure 4 

 
9.  Diagnostics for Lognormal Approximations 
 

The preceding subsection presented diagnostics 
intended to identify cases in which the relative errors 

mtd  deviated substantially from their expectations 
under an idealized chi-square approximation.  If we 

instead had )/ˆln( *
mtmt VV  following a  normal 

distribution with mean zero and variance 2
eσ , the 

corresponding diagnostics would be the same as in 

Section 8, but with LFtR̂ replaced by  
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and associated approximate 95% confidence interval 
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Note especially that relative errors mtd  that 

display a greater degree of dispersion (heavier tails) 
than would be observed under a lognormal model 
will tend to produce confidence intervals (9.1) that 
fall entirely above zero.  Similarly, relative errors that 
display less dispersion (lighter tails) than would be 
observed under a lognormal model will tend to 
produce confidence intervals that fall entirely below 
zero.  (Conversely, confidence intervals that include 
zero are consistent with a lognormal model for the 
relative errors mtd  . 

Similar comments apply to the quantity averaged 
over time, 
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with associated confidence interval equal to (8.4) 

with LFR̂ replaced by LFR
~

. 
Figure 5 displays the confidence intervals (9.1), 

with labeling similar to that for Figure 2. 
 

 
Figure 5 
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