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Permanent and Collocated Random Number Sampling and
the Coverage of Births and Deaths

Lawrence R. Ernst,] Richard Valliam,2 and Robert J. Casady3

Permanent random number (PRN) and collocated random number (CRN) sampling are
practical methods of controlling overlap between different samples. The techniques can be
used for overlap control between samples for the same survey selected at different time
periods or between different surveys at the same time period. Although the methods are in
wide use, their properties, when a population is changing due to births and deaths, have not
been studied extensively. Ideally, each technique should produce a sample proportionally
allocated to births and persistent units when equal probability sampling is used. We study
particular PRN and CRN schemes that produce fixed size samples, involve complete, rather
than partial, rotation of units within strata, and are effective at meeting the goal of coordinat-
ing two or more surveys by minimizing the overlap among them. We present theoretical and
empirical results showing the circumstances where proportional allocation is approximately
obtained with these particular schemes. We also discuss important cases where PRN and
CRN sampling are substantially different in their coverage of birth and persistent units.

Key words: Persistent units; poststratification; sample allocation; sequential simple random
sampling.

1. Introduction

The statistical agencies of national governments routinely publish economic statistics
based on surveys of business establishments. Often, different surveys use the same frame
of establishments for sampling, leading to a need to somehow coordinate sampling for the
surveys. Limiting the burden placed on an establishment may be critical to obtaining and
maintaining cooperation when a unit is eligible for several surveys. Controlling the length
of time that a sample unit is in a particular survey and the number of different surveys that
a unit is in are both desirable. Maintaining a frame over time by updating for births and
deaths and properly reflecting these changes in each sample are also important issues.
Much of Part B, ‘‘Sample Design and Selection,”” in Cox, et al. (1995), for example, is
devoted to these topics.

A number of government agencies either currently use or have in the past used

1 U.S. Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington, DC 20212, U.S.A.
E-mail: Ernst_L@bls.gov
2 Westat, Inc., 1650 Research Boulevard, Rockville, MD 20850, U.S.A.
3 4510 Tillman Bluff Road, Valdosta, GA 31602, U.S.A. R. J. Casady is a consultant.
Acknowledgments: Much of this research was conducted while the second and third authors were employed by
the U.S. Bureau of Labor Statistics (BLS). Any opinions expressed are those of the authors and do not constitute
policy of BLS.

The authors thank the reviewers and the Associate Editor for their valuable comments.

© Statistics Sweden



212 Journal of Official Statistics

permanent random number (PRN) or collocated random number (CRN) sampling as a way
of facilitating sample coordination among surveys and rotation of units within a survey.
The general methods are described in Section 2. Statistics Sweden (Ohlsson 1992,
1995), the Institut National de la Statistique et des Etudes Economiques of France (Cotton
and Hesse 1992), the Australian Bureau of Statistics (Hinde and Young 1984), and
Statistics New Zealand (Templeton 1990) each have used variations of PRN or CRN
sampling. Ohlsson (1995) summarizes the methods of the different countries.

Though the methods are in common use, there appears to be a limited literature on their
properties, particularly regarding the treatment of population changes due to births and
deaths. There has been some recognition, for instance, that certain implementations
may have a ‘‘birth bias,”” i.e., births are selected in a sample at more than their
proportional rate in the population (see, e.g., Ohlsson 1995, p.166). How serious the
bias is and the parameters that effect it are studied in this article. The calculations are fairly
complex, but, since the PRN and CRN methods have seen such wide use, we feel that a
better understanding of their properties is worthwhile.

There are a variety of implementations of the methods. Some alternatives lead to
random sample sizes while others produce fixed sample sizes. Different methods also
may handle births and sample rotation differently. The theory and empirical results we
discuss refer to particular PRN and CRN schemes that (1) yield fixed sample sizes, (2)
facilitate rotation of entire samples within strata, and (3) are effective at meeting the
goal of coordinating two or more surveys by minimizing the overlap among them. This
method of complete rotation is useful in some types of surveys but, unlike some other
methods, does introduce the possibility of a ‘‘birth bias,”” as we will discuss.

Section 2 briefly describes the methods and the reasons why collocated sampling was
developed. The third section presents theoretical properties of particular implementations
of the methods when births and deaths can occur in the population. Section 3 also
describes the particular methods of complete rotation we consider and reasons for their
use. Section 4 gives some numerical results to illustrate the effects of different population
sizes, sample sizes, birth and death rates, and the method of sampling on the relative mis-
allocation of birth units. The empirical results also illustrate the theoretical finding that, for
the versions studied here, collocated sampling exercises much tighter control over the
achieved sample allocation to persistent and birth units than does PRN sampling. Section
5 is a conclusion where we briefly mention some estimation issues.

2. Description of the Methods

Denote by F|, the initial (time period 0) frame of N, units. In the subsequent sections, we
will consider the possibility of births and deaths that occur at later time periods. The
methods described in this section are normally applied within strata but, for simplicity,
we omit most references to stratification. Denote a random variable that is uniformly
distributed on the interval [0,1] by U[O0,1].

First, consider equal probability, PRN sampling. A simple random sample, S, of fixed
size n can be selected from the population of size N, by sorting the population in a random
order and then selecting the n units in one of two ways, the first leading to a PRN sampling
procedure that we denote as the fixed starting point PRN (FSP) procedure, and the second a
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procedure that we denote as the equal probability starting unit (EPSU) procedure. To
obtain a sample using FSP we proceed as follows:

(P1) independently assign a realization u; of a U[0, 1] random number to each unit in the
population,

(P2) sort the units in ascending order based on u;, and

(P3) beginning at any point a, € [0, 1], include the first n units with u; > ay. If n units
are not obtained in the interval (ag, 1], then wrap around to 0 and continue.

EPSU uses the same first two steps, but instead of (P3) selects the n units by

(P3’) selecting a starting unit with equal probability among the units in F,. Include this
unit and the next n — 1 units in the ordering in S,, where, as in the case for FSP, wrap
around to O if necessary and continue.

Both of these methods are known as sequential simple random sampling without
replacement (srswor). A key distinction between them is that while for both methods
the unconditional probability that a unit is the first unit selected for S is the same for
all units in F|;, conditional on the u;’s this is only true for EPSU.

Both FSP and EPSU are fixed sample size plans, which are the only ones that we will
consider. These are of interest in survey designs where the budget is fixed and sample size
is closely related to cost. An alternative is to use PRNs but sample all units with values of
u; in an interval [a, b]. This leads to a fixed sampling fraction but not a fixed sample size,
and, thus, makes costs less predictable.

The main objection to using FSP in sequential srswor is that the PRNs within detailed
strata may not be well distributed. The poor distribution may lead to problems in meeting
the third goal listed in the Introduction, to coordinate two or more surveys by minimizing
the overlap among them. If the u;’s are, by chance, clumped in one part of the [0, 1]
interval, the samples for the surveys may overlap unnecessarily when using FSP. The
problem can be especially severe in strata where the population size is small. As an
illustration, suppose there are three surveys and that the frame and sample sizes are

N=12, n=m=2, n=4
Suppose further that the starting points for the three are
ay = 0, a, = 025, asz = 0.50

and that, by bad luck, the u;’s for all 12 units are in [0, 0.25).

Using FSP sampling, units 1 and 2 in the sorted frame will be in all three surveys
because survey 1 takes the first two units starting at a; = 0, while surveys 2 and 3 wrap
around to O since there are no u; = 0.25. As a result of clumping of the u;’s, only four
distinct units are selected even though, with better placement of the u;’s, the samples could
be completely nonoverlapping. This example is extreme since the probability of all 12 u;’s
being in [0, 0.25) is negligible, but illustrates the general idea that undesirable overlap may
occur unless special measures are taken.

We will focus in this article on two methods which avoid the overlap due to clumping
that is associated with FSP. The first is EPSU. To illustrate for the above example, with
EPSU we can randomly choose a starting unit for the first survey, have the starting unit
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for the second survey be the third unit following the starting unit for the first survey, and
have the starting unit for the third survey be the third unit following the starting unit for the
second survey. There will be no overlap.

The use of collocated random numbers (Brewer, Early, and Joyce 1972; Brewer, Early,
and Hanif 1984) is another solution to this problem. This technique was originally
developed as a way of reducing the randomness of sample size that accompanies Poisson
sampling. The assignment of CRNs is accomplished as follows. A U[0, 1] random number
is assigned to each unit in the frame. These numbers are sorted in ascending order and the
rank R; noted for each. A single U[0, 1] random number & is then generated and
u; = (R; — €)/IN, is calculated for each unit on the frame.

Collocation spaces the random numbers assigned to the population units an equal
distance apart and eliminates the clumping that can occur with PRNs.

Note that in the above example there will be no overlap of the three initial samples if
CRNs are used with the starting points a; = 0, a, = 0.25, a3 = 0.50. However, if for
each succeeding time period each of these samples is completely rotated by choosing as
a starting point the CRN of the final unit selected for the survey for the previous time
period, and if there are no births or deaths, then for the fourth time period, time period
3, two of the sample units for survey 3 will also be in sample for survey 1 and one will
be in sample for survey 2. There will also be an overlap of the samples for survey 3
and either survey 1 or survey 2 for time periods 2, 4, and 5. There will never be any overlap
of the samples for surveys 1 and 2 because n; = n,. The same results hold for EPSU if the
starting units for the three surveys are spaced as previously described.

3. The Effect of Births and Deaths

Let B denote the frame of births at time period 1 and suppose that it contains Np units.
Additionally, let Fy; be the set of units in F|, that are ‘‘nondeaths’’ or ‘‘persistents,’’
and suppose that F; contains Ny, units. The updated frame at time 1 is F; = Fy; U B
and contains N; = Ny, + Ny units. The number of deaths is, thus, Nyg = Ny — Ny;. The
true proportion at time 1 of units that are births is then Pr = Ng/N;. The sample
selected from the time O frame is S, and the time 1 sample is S;. In this section we
give implementations of PRN and CRN sampling for handling births and deaths and
examine whether the sample proportion of births, Pg, is near Pp. If Pg differs from
Pt in expectation, this can be called a ‘‘selection bias,”” but we emphasize that this
is different from the bias of an estimator — a topic briefly mentioned in Section 5.
To avoid the negative connotations of the word ‘‘bias,”” we will refer to the quantity
E(Pg) — Pt as a measure of ‘‘misallocation’’ rather than bias. Misallocation is just a
measure of how far the sample departs from being proportionally allocated to births
and persistents.

3.1. Permanent random numbers

When a frame is periodically updated for population changes, an operationally simple
method is desirable for handling births. One option is to create separate strata for births.
If the same strata definitions are used for the birth strata and the persistents strata, and
many of the strata have few births in the population, then even an allocation of one unit
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to these birth strata may result in an overall sampling rate for birth units, in comparison
with persistent units, that is undesirably high. If, however, broader strata are used for
the birth units than the persistents to avoid this problem, this may lead to other undesirable
outcomes, such as units with large differences in size having the same selection
probability.

Another obvious approach, that we will study, is to repeat for the birth units the
procedure used earlier for the old units. For PRN sampling, a U[0, 1] random number is
assigned independently to each birth unit. Birth units and persistents are then sorted
together based on PRN. Let a;; be the PRN of the last unit in the time 0 sample and suppose
that the time 1 sample consists of the first # units with u; > ag. This is the case for either the
FSP or the EPSU method. However, since it is only the EPSU method that avoids the
overlap due to clumping, it is this PRN method on which we concentrate throughout
the remainder of the article, except for an example following Proposition 1 illustrating
the differences in the misallocations between the two methods. (As can be seen from
the proofs of Propositions 1 and 2 below, it is the assumption that the time 1 sample
consists of the first n units with u; > ag that results in the misallocation of birth units.)
This approach appears to be quite similar to one used by Statistics Netherlands (van
Huis, Koeijers, and de Ree 1994).

This type of sampling is appropriate when the entire sample in a stratum is being
rotated. The U.S. Bureau of Labor Statistics (BLS), for example, is currently using this
method for its Occupational Employment Statistics survey. Data are collected annually
for this survey and BLS promises respondents that they will not be in sample more than
once every three years, necessitating full sample rotation annually.

An alternative to full sample rotation that is used in many surveys is to rotate a part of
each stratum — a topic not considered in detail here. The problem with extending the fixed
sample size plan to partial rotation is that if the first n’ of the time 0 sample units are
replaced at time 1 by the first #" units with u; > a and the remaining units at time 0 are
retained at time 1, then while the expected proportion of births among the n’ new units
at time 1 is the same as that given in the propositions below, there are of course no births
among the units retained at time 1. In addition, although there would be deaths among the
retained units, they would not be compensated for in sample size by taking additional
units. The PRN shift method, described by Ohlsson (1995), in which a moving fixed-
length sampling window is used, avoids this problem with births, but leads to a random
sample size.

The full-stratum rotation method that we do analyze for the EPSU method has a slight
selection bias towards births as shown in Propositions 1 and 2.

To make the exposition clearer, we have separated the case of no deaths (Proposition 1)
from one having both births and deaths (Proposition 2). This separation will be especially
useful when considering CRN sampling in Section 3.2.

Proposition 1. Assume that n < N; and that there are no deaths, i.e., Ny = Ny;. Using the
EPSU method of sampling described above, the expected proportion of the time 1 sample
that is in B is

Prpsy = Np
EPSU—Nl_l
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Proof: The final unit selected for the S, sample is a unit on the F;, frame. This unit is not
among the first N; — 1 units that can be selected for the S; sample. Consequently, among
these N; — 1 units, exactly Ny are in B and, by the nature of PRNs, each of these N; — 1
units has a probability Nz/(N; — 1) of being in B. This establishes (1).

The relative misallocation in the proportion of birth units in the S; sample for EPSU
sampling is
Pgpsy — Pr _ 1
Pr (N =1

@)

Thus, the relative misallocation does not depend on n and is small when the population
size N, is large.

Interestingly, the same result does not hold for the FSP method. To see this, consider the
following example.

Example 1. Suppose that (Ny, Ng,n) = (3, 1, 1). For the EPSU method each of the three
units in F other than the unit in S, has equal probability of being selected as the S,
unit, and hence Pgpsy = 1/3 in agreement with (1). However, consider the FSP method
with ay = 0. Now among the four units in F the birth unit has equal probability of being
in any one of the four positions in the ordering measured from 0. The birth unit will be the
sample unit for the S; sample if and only if it is the second unit and hence Pgsp = 1/4, and
thus for this example there is no misallocation of birth units for FSP. The difference in the
FSP and EPSU results occurs because, even though for both methods the S, sample unit
cannot be a birth unit, which raises the probability that the S; unit is a birth unit, in the case
of FSP this is balanced by the fact that, if there is a unit in F; between 0 and the S, sample
unit, it must be the birth unit. To carry this example further, suppose at time 1 three sample
units are selected instead of one. Then for EPSU the probability of each of the units being
the birth unit is 1/3. For FSP with ay = 0 this probability is 1/4 for either of the first or
second units being the birth unit, but 1/2 for the third unit since, if the birth unit is in either
the first or fourth position in the ordering measured from 0, it is the third unit selected for
the S; sample. This illustrates that FSP can also result in a birth misallocation at time 1, but
only if a large enough sample is chosen that it is possible to wrap around to ay.

Proposition 2. Assume that n < N and that there may be deaths, that is Ny; = N,. The
expected proportion of the time 1 sample that is in B is

Ng Ny,
Pepsy = 2 (14— o 3
Epsu Nl( +N0<N1—1>> ©)

Proof. As in the first proof, if the final unit selected for the S sample is in F{y;, then each of
the first Ny — 1 units that can be selected for the S; sample has a probability Ng/(N; — 1) of
being in B. If, however, this final unit is a death, and hence not in F|, then each unit in the
frame F| has a probability Nz/N; of being in B. Since the probability that this final unit is
in Fy; is Ny /Ny, we have

_ NoiNp Noi '\ N
Pepsu =t |1 - |+
No(Ny — 1) Ny J Ny

from which (3) follows after simplification.



Emst et al.: Permanent and Collocated Random Number Sampling and the Coverage of Births and Deaths 217

The relative misallocation in the proportion of birth units in the S; sample for EPSU in
the general case is
Pgpsy — Pt Ny 1

= = 4
Pr NoNy— 1) N, — 1 @)

As in the case when there are no deaths, the relative misallocation does not depend on n
and is small for large N;. The relative misallocation also decreases as the death rate,
1 — Ny, /N,, increases.

3.2. Collocated random numbers

Assigning collocated random numbers has the advantage of spreading the numbers evenly
across the unit interval, but the analysis becomes quite complicated. The CRN method can
also lead to some unexpected results for small populations, as we show in this section.
Assume that the births are handled as the original units were. A U[0, 1] random number
is assigned to each birth. These numbers are sorted in ascending order and the rank
Rp; noted for each unit. A single UJ[0, 1] random number &z is then generated and
ug; = (Rp; — ep)/Np is calculated for every birth unit on the frame. The original CRNs
and the new birth CRNs are then sorted together.

The results for collocated random number sampling are considerably more compli-
cated to derive, and we have placed proofs in the Appendix. Assume that Nz = N,.
We first consider the case Ny, = N, i.e., there are no deaths. Example 2 illustrates a
disconcerting phenomenon that occurs when the birth rate is extremely high and the
sample size is small.

Example 2. Suppose that (Ny,Np,n)= (4,4,1). Let the rounded CRNs for the
Ny =4 old units be (0.20, 0.45, 0.70, 0.95) and the sample at time 0 be the first
unit — the one with CRN = 0.20. The CRN assigned to the first birth unit will
be in (0,0.25). If it is less than 0.20, then the next birth unit will receive a
CRN somewhere in the interval (0.20,0.45). If the CRN for the first birth is larger
than 0.20, it will have to be in (0.20,0.25). In either case, the sample unit at time
period 1 must be a birth. In fact, this forced selection of a birth holds regardless of
the particular CRNs used.

The general result for the expected proportion of births is given in Proposition 3, which
shows that the problem disappears when the sample size is large.

Proposition 3. Assume that Ny; = N, and n < N;. For CRN sampling, the expected
proportion, denoted Pcgry, of the sample that is birth units is

1 . }’lNO NB nNB
Pern = — =2 5
CRN nmm{ L\ﬁ —‘ No ’VNI &)
where [x] is the smallest integer =x.

Note that (5) implies that

Pcrn — P1 =0 (6)
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and that
PCRN — Pr I . nN() nN() N, niNpg nNp\ N,
————— = —min — | =, == - | =
Py n N, Ny ) Ny N, N; ) Np
T n Ny’Ng| n

It follows from (6) and (7) that the CRN misallocation is nonnegative and that the relative
misallocation is bounded above by 2/n. As n varies, the expected number of excess birth
units in sample fluctuates within these bounds, but the general trend in the misallocation is
downward as n increases and is small for large n.

The proof of Proposition 3 in the Appendix shows (see expressions A.2—A.4) that
[ng — nNg/N,| < 1 and |ng/n — N/N,| < 1/n. In other words, the realized number of births
selected with CRN will be within 1 unit of the expected number. Consequently, for large n,
being off from the expectation by 1 unit is nothing to worry about. On the other hand, when
n is small, being off by 1 may be a large percentage misallocation. In Example 2 we have,
Pcrn = min{[4/8],[4/8]} = 1, reflecting the fact that, in this extreme case, we have no
choice but to select a birth at time 1. Note that if EPSU sampling was used, then
Proposition 1 implies that Ppgy = 4/7 compared to the proportion of births in the
population which is 1/2. Thus, the degree of misallocation is less for EPSU than for CRN.

An advantage of CRN sampling is that it offers tighter control over the sample
allocation than PRN because of the way the CRNS are spaced in the interval. That is, while
the realized number of births for CRN sampling is always within 1 of the expected number
when there are no deaths, the only restrictions on np for PRN sampling are that
max{n — Ny + 1,0} = ngp = min{Np,n}.

The following two examples illustrate the ideas behind the proof of Proposition 3. In
particular, they illustrate the key results (A.4) and (A.5) with the first expression following
“min”’ in (A.5) applicable in Example 3 and the second expression applicable in
Example 4.

Example 3. Suppose that (N, Nz, n) = (5,4, 3) and the CRN of the last sample unit in S is
ajy = .27. The smallest interval of the form (.27, x] for which there must be CRNs of at
least n — 1 units in the interval is (.27,.52]. The CRN of 1 unit in F;, and 1 unit in B is
in this interval. The third unit to be selected for S; is in B if and only if there is a unit
in B with CRN in the interval (.52,.67) since the CRN of the first unit in F with
CRN > .52 is .67. The probability that there is such a unit in B is .6. Hence ng = 1 or 2
and P(ng = 2) = .6.

Example 4. The only change from Example 3 is that n = 4. Then with x defined as in
Example 3, we have x = .67, since there are in (.27,.67] the CRNS of 2 units in F;, and
the CRNs of either 1 or 2 units in B. Furthermore, there will be 2 units in B in §; if and
only if there is at least 1 unit in B with CRN in the interval (.52, 87), which is always
the case. Hence P(ng =2) = 1.

We next consider the general case for CRNs, that is Ny; = Ny. We proceed to derive an
expression for Pcry, Which is much more complex than for the case Ny; = N,. For each
positive integer m, let S;,, denote the first m units in F; U B (that is including deaths)
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following the last unit in ;. CRN sampling begins at the first unit after the last one in the
time 0 sample and marches through the updated frame until the desired sample of size n is
obtained, skipping over a death whenever one is encountered. In symbols, we seek the
smallest m such that S;,, N F; has exactly n elements, and hence S; = S;,, N F;. The
number of deaths between times 0 and 1 is Nyg = Ny — Ny;. The range of m is given by
the set M = {m : n =m = n+ Ny} since, with 0 deaths, we have to traverse only » units
to obtain the sample, but with deaths, we may need to skip over all Ny, of them before
getting a sample of n.

In Proposition 4 below h(x,t,a,b) denotes the hypergeometric probability of x
successes in x + ¢ trials when there are a successes and b failures in the population, i.e.,

e (/2]

Proposition 4. Let ng, denote the number of units in S;,, "B, N' =N, + Ng, and
Npgn = |mNpIN'|. Next, let ngy,, ng, denote the number of elements in Sy, N Fy,
Sim M Foy, respectively, and sz, denote the final sample unit in Sy,,. For each m there
are at most three different ways that m can be the smallest integer for which S;,, N F;
has exactly n elements, namely:

Npm = n;_?mvn()lm =n- n%m’ and S1fin € Fy (3
Npm = Mgy + 1,001, = n — nlg,, — 1, and 5,5, € B )
npm, =ngm+1,n01m:n—nbm— 1, and slmeFm (10)

Then, the expected proportion of a sample of size n that is birth units is the sum of the
number of births in the events (8), (9), and (10) times their respective probabilities of
occurrence divided by the total sample size. Symbolically, this is

1 / / /
Pcgry = . Z(”BmPLme + (g + DPypm + (ngy + DPyrym) an
meM

where Prr, > Pusm, and Pyp, ,, are the probabilities associated with (8), (9), and (10)
respectively and are shown to be

/ N /
Purym = POtgn = ) o hn = gy — Lom = n.Not = 1, Noo) (12)
Pyg,m = (P(ng,, = Ngy, + 1) — P(np,_1)
= nigy + D)X h(n = iy, — 1.m = n, Nor. Noo) (13)
/ N /
Putym = POpguty = Mg + 1) hn = ngy, = 2,m = n, No — 1, Noo) (14)
0

where P(ng,, = np,,), P(ng, = np,, + 1), P(npg,_1, = ng, + 1) are computed from (A.8),
(A.9) and (A.14).

Proposition 4 can be interpreted as follows. At time 1 we update the frame with births
but, for the moment, we just note which units are deaths without removing them. To select
the time 1 sample, we start with the first unit beyond where the time 0 sample left off. If we
go some arbitrary number m of units further on the list (including deaths) and the number
of births, ng,,, in this sample plus the number of persistents, ng;,,, equals the desired
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sample size n (after throwing away deaths), then this sample is a possibility for being the
one with the smallest m. Because of the random ordering of the collocated units, a prob-
ability is associated with each possible value of m. Depending on the last unit in the S,
sample, the probability of obtaining a particular number of persistents and passing over a
particular number of deaths is hypergeometric. For instance, associated with (8) and (12) is

( Noy —1 )( Noo )
n—ng, —1)\m—n
h(n — npy, — 1,m —n,Ny; — 1,Ny) = B
(n—ng 01 00) Not + Nog — 1

m — ng,, — 1
which is the probability of (a) selecting n — np,, — 1 persistents from the Ny — 1
population persistents (given that the last unit in S}, is a persistent) and (b) having to
pass over m — n deaths from the Ny, population deaths. The remaining two terms in
(12) are obtained as follows. It is shown in the proof in the Appendix that if ng,, = nj,,
then Slﬁn S F() and hence P(Slfm [S F()] |an = n};m) = N()I/NO' Flnally P(}’le = l’l;;m),
which is given in (A.8) and (A.9), is obtained from (A.4) and (A.5) in the proof of

Proposition 3 and the fact that the distribution of np,, is independent of the set of deaths
among units in F. The remainder of the proof of Proposition 4 uses similar ideas.

4. Numerical Comparisons

Because the effects of different parameters on the expected proportions of births are
difficult to discern in some of the earlier formulas, we present some numerical results
in this section. First, we calculated the relative misallocation for EPSU sampling in (4)
using various population sizes ranging from 5 to 100. Equal birth and death rates, from
0.2 to 0.8, were used so that the population was stable (N, = N;). The relative misalloca-
tion (Pgpsy — Pr)/Pr is plotted in Figure 1 versus the N, population size. The four panels
show the different birth rates. The relative misallocation, which is independent of sample
size, can be as large as 0.20 for N; =5 but decreases rapidly as the population size
increases.

Figure 2 shows the relative misallocations for CRN sampling plotted versus the sample
size for the same four birth rates. Equal birth and death rates were again used and relative
misallocations were computed as (Pcry — Pr)/Pr with Pcgy computed from (11).
Population sizes of Ny = 5, 10, 50, 100, and 200 were used. Expression (11) was evaluated
for samples of n =1, 3, 5, 20, 35, and 50 in cases where n < Ny. The results for the
different population sizes are shown in Figure 2 with different shades of gray. The points
are jittered slightly to minimize overplotting. For a given sample size, the shading goes
from dark gray for the smallest value of N, to light gray for the largest. For example,
for n =5, there are four population sizes having n < Ny: Ny = 10, 50, 100, 200. The
darkest gray dot is for Ny = 10, the lightest gray dot is for Ny = 200, while Ny = 50
and 100 are intermediate shades. As the figure shows, the main determinant of misalloca-
tion is the sample size with population size much less important. For samples of size 1 the
relative misallocation can be as much as 50%, but decreases rapidly as n increases.

Since the earlier analytic work was confined to two time periods, we conducted a
simulation study to examine the performance of EPSU and CRN sampling over three
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periods ( = 0, 1, and 2). An initial population of Ny = 200 was used and equal birth and
death rates of 0.2 were assumed to generate the populations at = 1, 2. Persistents at t = 1
were identified by generating a Bernoulli random variable for each of the Ny = 200 time O
units. If the random variable was larger than 0.2, then the unit was a persistent; otherwise,
it was a death. To generate the number of births at + = 1, a realization from a Poisson
distribution was generated with parameter 0.2N,. For the t = 2 population the procedure
was repeated: each r = 1 persistent was given a 0.2 chance of death and a Poisson number
of births generated with parameter 0.2N;. PRNs and CRNs were assigned to original units
and births as described in Sections 2 and 3. At both times, samples of n = 1, 3, 5, 20, 35,
and 50 were selected in cases where n < N (and N;). At time ¢ + 1 (¢ = 0, 1) the sample
consisted of the first n units with PRNs (or CRNSs) larger than the u; associated with the last
sample unit at time ¢. This procedure of population generation and sample selection was
repeated 10,000 times for every sample size.

Relative misallocations like those above were then computed. Let Ng; be the number of
births in the # = 1 population, Ny, the number of units that persist through ¢t = 0, 1, and 2,
Npi, be the number of time 1 birth units that persist at t = 2, and let N, equal the number
of births at time 2. Further, let ng;, ny12, g2, and ng, be the corresponding numbers of
units in a sample of size n. The relative misallocations in the simulations were computed
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as (Pg — P7)/Py, where Pg = > Pg;/10,000 and Pg; is sample proportion of units of a
specified type (births or persistents) in sample i, and the summation is across the
10,000 simulations. The average population proportion was calculated as Py = > Py/
10,000 where Pz; is the true population proportion in simulation i. Due to the way that
the number of births and deaths were randomly generated in the simulations, these
population proportions can vary among the runs.

Figure 3 is a dotchart of the relative misallocations for ngy, ng», and ng,. A panel for
ng1» 1s omitted since n = ngy, + ngjo + npy. Note that ng; corresponds to ¢ = 1, and ng;,
and np, to t = 2. For sample sizes of n = 1, 3, and 5, the misallocation is much less for
EPSU sampling than for CRN. The CRN technique tends to over-allocate the new births
(np; and np,) at both r = 1 and 2 for the small sample sizes. For sample sizes of 20 and
larger the discrepancy between EPSU and CRN sampling disappears since the relative
misallocations approach 0 for both techniques.

CRN sampling offers the possibility of tighter control over the sample allocation than
EPSU because of the way the CRNs are spaced on the unit interval. To investigate this,
we calculated, for both the EPSU and CRN simulations, a relative misallocation for
simulation run i as (Pg; — Pr;)/P7; where the proportions are for the four types of units
mentioned above subscripted by Bl, 012, B12, and B2. Figure 4 gives box plots of these
quantities for samples of sizes 20, 35, and 50 for the 10,000 simulation runs. The box plots
for the combination (EPSU, n = 20), for example, are labeled on the horizontal axis as
EPSU20. Other combinations use the same convention. The whiskers in the plot extend
to the extreme values of the data or a distance 1.5 times the interquartile range from the
center, whichever is smaller. The horizontal white line across each box is at the median
and outlying points are shown as dots. The key point to note is that the distributions of
relative misallocations are much tighter for the CRN samples than for EPSU. EPSU
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sampling produces noticeably larger interquartile ranges and generates more extreme
misallocations for all four types of units.

5. Conclusions

Permanent random number sampling and collocated random number sampling are appealing
methods because they are simple to execute and offer practical ways of controlling sample
overlap between different surveys and between time periods for a single survey. CRN sam-
pling was developed to eliminate the clumping that can occur with PRNs and to provide
more control over sample allocations. Although intuitively reasonable, the CRN method
leads to much more complicated theoretical analysis than does PRN sampling.

We have studied particular implementations of PRN and CRN sampling that yield fixed
sample sizes and rotate entire stratum samples at once. There are instances where equal
probability PRN or CRN sampling can yield samples that in expected value are far from pro-
portionally allocated to births and persistent units. The closeness of the EPSU allocation to
proportionality, for example, depends on the size of the population. The creation of small
strata combined with the use of the fixed sample size EPSU method with complete sample
rotation should be avoided if a proportional allocation is high priority in a survey. For CRN
sampling the large departures from proportionality occur at small sample sizes.

If at time 1 all units are incorrectly assumed to have a selection probability of n/N, and
hence weighted by N/n, a biased estimator of total will generally result when using the
PRN and CRN implementations considered here. This bias can be avoided by using the Hor-
vitz-Thompson estimator, which differentially weights the birth and persistent units. How-
ever, calculation of the selection probabilities for the births and persistents requires the use
of either Proposition 1, 2, 3, or 4, which, particularly in the case of Proposition 4, is cum-
bersome. An alternative, easily calculable, estimator is the poststratified estimator with Fy,
and B the two poststrata. However, if it is possible that either ny; = 0 or nz = 0, then this
poststratified estimator is not unconditionally unbiased without modification.

Finally, we note that different variants of PRN and CRN sampling have been used by
different countries. The most commonly used procedures appear to be ones that allow
the sample size to be random, perhaps because of a realization that statistical properties
of these methods are easier to derive. Each variant may require separate theory to describe
its properties. We hope that the methods presented here will be useful in analyzing other
alternatives that are in use.

Appendix

Proof of Proposition 3. Let ny, ng denote the random number of sample units in a CRN
sample of size n that are in Fy, B, respectively. Note that to establish (5) it is sufficient
to show that

i [PM0] Mo e
Fomw) = mm{ [Nl W Ny [Nl W } (A

Define
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where LxJ is the largest integer =x. Since there are no deaths, N; = N, + Np. Note that if
nNg/N, is an integer, then so is nNy/N; and also n, + np = n. Otherwise, ny +ngy = n — 1.
We will show that

if nNg/N, is an integer then ny = nj; (A.3)
and if nNy/N, is not an integer then ny = ny or ny = np + 1 (A.4)
and
, ([aNg]Ns
Png =ng+1)= mm{ {”Tﬂ Fﬁ — n, 1} (A.5)

Observe that (A.2) and (A.3) establish (A.1) in the integer case and that (A.2), (A.4) and
(A.5) establish (A.1) in the noninteger case. To establish (A.3), (A.4), and (A.5) let:

and for any € > 0 let I(€) = (a;, ag + €], where aj) is the CRN for the last sample unit in S,.

Now if nNg/N; is an integer then €5 = €; by (A.6), and hence I({) contains n, CRNs
from F,, and nz CRNSs from B and, since nj, + ng = n, (A.3) follows.

To establish (A.4), let €' = max{€;, €5} and observe the following. I({') contains at
least n;, CRNs from F;, and ny CRNs from B by the definitions of €;, {5. Furthermore,
I(€') contains no more than n; CRNs from F,, since I(£y) is the smallest interval of the
form I(€) containing ng + 1 CRNs from F, and €' < n/N; < €. Similarly, I(£") contains
no more than nz +1 CRNs from B since ¢ < €j. (Note that while I(£3) contains
np + 1 CRNs from B, it is not necessarily the smallest interval of the form I({) to do
so, which is why it is possible for I(£') to contain ny + 1 CRNs from B.) Thus I({')
contains no more than ng + nz + 1 = n CRNs from F, U B, and (A.4) follows.

To obtain (A.5), we observe that since I(£j) contains ny CRNs from B and since I(£{) is
the smallest interval of the form I(€) containing ny+ 1 CRNs from F,, then
P(ng = np + 1) is the probability that I({;) ~ I(€5) contains at least 1 CRN from B.
(The notation I(€¢,) ~ I({;) means the interval €, excluding €,.) However, since the length
of I(€g) ~ I(€p) is [nNy/N; |/Ny — np/Np and there is a distance of 1/Np between CRNs in
B, (A.5) follows by taking the quotient of the last two expressions.

Proof of Proposition 4. As in the statement of Proposition 4, ng,, is the number of units in
Slm M B,N/ = NQ + NB’

N = |mNpIN'| (A7)
and
PLm = P(an = n;?m)a PUm = P(”Bm = n;?m + 1) (AS)

Then it follows from (A.2), (A.3), (A.4), (A.5), (A.7) and (A.8) that

. mNy | N,
Py, = mln{ { N,ﬂ N—‘z — Mg 1} and P, =1 — Py, (A.9)

Recall that ny,,, ny;,, denote the number of elements in S;,, N Fy, S1,, N Fo;, respectively,
and sy, denotes the final sample unit in S;,,. For each m the three different ways that m can
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be the smallest integer for which S;,, N F has exactly n elements were given in (8), (9),
and (10). Note that it is not possible to have ng,, = nj,, and Siim € B. This is because if
Siim € B and € is the length of an interval with left end point the CRN for the last sample
unit in S, and right end point the CRN of s,5,, then n,/Ny < £ < ng,,/Ng. Consequently,

N, = NBnﬂ >NB—an + Mon
Nj Njs + N,

> gy,

To compute the probability of (8), Pyf,, . first note that

P(sp € Foilnp, = np,) = Not/Ny (A.10)
since sy5, € B from the above discussion. Next observe that,

P(ng1,, = 1 — Ngy|gy = Mgy, St € For) = h(n — nlg,, — 1,m — n,No; — 1, Ngp) (A.11)
Combining (8), (A.8), (A.10), and (A.11) we obtain that

PLme = Ppu(No1/No)h(n — n;?m — Lm —n,Ny; — 1, Nyp) (A.12)

To obtain the probability of (9), Pyp,,, we observe that

P(ng,, = np, + 1 and 5,5, € B) = Py,, — P(ng,, = np,, + 1 and 54, & B)

= Pyp — P(nggu—1) = ngy + 1) (A.13)
and
Pty if Mg, 1y = 1}
Pl 1) = Mgy + 1) = {OU(’” b ;J::\";lsl; "o (A.14)

We then combine (A.13) with

P(ny,, =n — né;m — 1ng, = njgm + 1,515, € B)

= h(n — nj,, — 1,m — n, Ny, Nyo) (A.15)

to obtain

Pypm = (Pym — P(npgu—1) = Mgy + 1)) h(n — ng,, — 1,m — n, Noy, Noo) (A.16)

Similarly we obtain that

Pyg,m = P(gun—1) = ngy + D(No1/No)h(n — ng,, —2,m — n, No; — 1, Nyo) (A.17)

We finally combine all of the above to conclude,

Pers = - 3 s Prriyn+ (s & Py + G+ VP ) (A.18)

meM

where M = {m:n=m=n-+ Ny}
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