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     For every new sample for the commodities and
services (C&S) component of the U.S. Consumer Price
Index (CPI), the Bureau of Labor Statistics produces a
C&S sample design in which the outlets and items are
allocated in an optimal fashion.  This item-outlet
optimization C&S sample design requires the
estimation of components of variance for the three
factors in the design:  non-certainty primary sampling
units (PSUs), item-strata and outlets.  A fourth
component of variance is the error term.  The total
variance of these unit components of variance, divided
by their respective number of PSUs, item-strata,
outlets and quotes, is then minimized by the optimal
number of respective outlets and item hits, as
constrained by a cost function.

1.  The Design

     Commodities and Services (C&S) accounts for
72.5% of the CPI (as measured in expenditure shares),
with Housing accounting for the remaining 27.5%.1

The first stage of the overall design is the PSU
(Primary Sampling Unit) sample selection.  This stage
is common to both Housing and C&S.  The CPI is
conducted in 87 PSUs in 83 geographic areas.  (New
York City has three PSUs, Los Angeles two and
Baltimore-Washington two.)  The 31 largest A-level
PSUs are selected with certainty.  The 56 smaller B-
and C-level PSUs are then selected with probability
proportional to size2 (pps) within their respective
regions:  Northeast, Midwest, South or West.  The
Index itself is published at the AREA level, which
includes all of the A-level PSUs.  For the B- and C-
level PSUs the Index is calculated and published at the
regional level:  X100, X200, X300 and X499 are the
respective AREAs for the B’s in the four regions, and
                                                       
1 Bureau of Labor Statistics,  CPI Detailed Report
(Feb 1999),  p. 7.
2 Size here equals population.

D200, D300 and D400 the AREAs for the C’s (no C-
level city in the Northeast got selected in the last pick).
Thus PSU is a random factor only in the AREAs
X100, X200, X300, X499, D200, D300 and D400.

     Two further independent sampling stages occur in
C&S:  outlet allocation and item allocation, within
each PSU-Replicate combination.  The outlet sample is
based on the Telephone Point of Purchase Survey
(TPOPS), conducted by the Bureau of Census for the
BLS.  The item sample is based on the Consumer
Expenditure Survey (CE), also conducted by Census
for BLS.  Outlets are selected in 217 TPOPS categories
using a systematic pps3 sampling scheme.  Items are
selected in 13 major groups using a stratified
systematic pps sampling scheme.  The components of
variance themselves are calculated at the AREA level
(i.e., all the A’s plus the 4 X’s and the 3 D’s as
delineated above) by Major-Group.  For example, a set
of three  components of variance (ITEM, OUTLET &
Error) is calculated for APPAREL (MAJ_GRP 7) in
Atlanta (AREA  A319), and a set of four components
of variance (PSU, ITEM, OUTLET & Error) is
calculated for, say, MEDICAL in X100 (the B-level
cities in the Northeast).  The estimator is the average
price change for each AREA – MAJ_GRP category.
The total variance of each estimator is modeled as the
sum of the four components (or three, in the certainty
A-level PSUs):
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3 For OUTLET and ITEM sample selection size equals
expenditures.



where each Ni stands for an appropriate number of
psu’s, items, outlets or quotes.

     The sampling variance of price change for the All
US  C&S Index is  σ2

TOTAL = ∑j ∑k RI2
j,k · σ2

j,k. The
RIj,k’s are the relative importances for each AREA –
MAJ_GRP combination, factoring in both relative
expenditures and relative populations, with  ∑j ∑k RIj,k

= 1.  It is this σ2
TOTAL  that is then minimized in the

optimization procedure, but it is the unit-level
components of variance that will be calculated and
analyzed, using weighted REMLs (Restricted
Maximum Likelihood Estimation) as our chosen
methodology.

2.   The Weights

     Before proceeding to the general linear model
analyses,  we would like to present the rationale for
and construction of the weights that we used.  In the
CPI not all price changes are equal.  An elaborate
system of weights, essentially based on expenditures
shares, is used at both the basic and aggregate levels of
index calculation.  At the basic item-stratum level,
within each AREA, a group of prices-with-weights are
combined into a sub-index (or, price relative), using
either a Laspeyres or a Geomeans formula.  These
price relatives are then aggregrated, this time with
separate aggregate weights, into various higher level
indexes which then become the particulars of the CPI,
including the All US–All Items Index itself.

     The random variable of interest for calculating our
components of variance is not, however, this price
relative, but an individual price change.  (No
OUTLET variance component could be produced
without price change observations at  the quote level
and, besides, a unit component of variance requires
exactly that:  a unit-level observation.)  But in line
with the basic price relatives and the higher-level
aggregate indexes, the individual price changes and
their concomitant variance components invite a weight
structure as well.  Happily we do have basic weights
(FNLWs) attached to each individual price quote.   If
we can configure these weights with appropriate
relative importances, we might be in business.  And
we can.  We have cost-weights for every item-stratum
in each AREA by MAJ_GRP category and so we can
calculate a relative importance (RIis,j,k) for every item-
stratum in each AREA by MAJ_GRP category.  The
resultant quote-weight is simply:  QWT = FNLW * RI.
The weights, however, are not attached to the
observations themselves but to the residual sum of

squares: i.e., .)ŷy(w 2−Σ  For an ANOVA-based

analysis this means using weighted least squares; for
REML estimation the squared residuals themselves are
weighted.

     One last crucial decision had to be made however:
whether to utilize these QWT’s as is or to rescale them
in some way.  Pfeffermann (et al), in a 1998 paper,
“Weighting For Unequal Selection Probabilities In
Multilevel Models”,4  offers  the mean of the weights
as a candidate rescaling factor.  Thus, Wi,j,k = QWTi,j,k

/ λ, using Pfeffermann’s suggested  λ = ∑i QWTi,j,k  /
nj,k.  Besides “retaining consistency” and probably
reducing small sample bias (the main object of
Pfeffermann’s inquiries and recommendations), this
particular mean-scaled weight structure leaves the
linear model results themselves at the same unit level
at which we want our components of variance.  I.e., ∑i

Wi,j,k = nj,k , just as the trace(I) = nj,k in any unweighted
model.  Moreover, this re-scaling clearly retains the
full information content of the original weights.
Finally, the use of these weights seems to have
produced two additional side-benefits:  (1) more stable
components of variance across time periods, and (2) a
final result, the σ2

TOTAL , that compares favorably and
properly in magnitude with an independent variance
calculation for the All U.S.– All Items Index.5   

3.  The Model

     The model we will analyze treats all three effects as
random.  The design is unbalanced.  We let  yijkl  be the
observed unit price change between time t and time t–
6 for quote l within psu i, item j, and outlet k.  Then,

(1)         yijkl = µ + pi + hj + ok + eijkl ,
                      where    µ  is a fixed effect
                                    pi ~ N(0, � 2

unit, psu)
                                    hj ~ N(0, � 2

unit, item)
                      ok ~ N(0, � 2

unit, outlet)

                                                       
4 D. Pfeffermann, et al (1998), Weighting For Unequal
Selection Probabilities In Multilevel Models, Journal
of the Royal Statistical Society, Ser B, Vol 60, pp 23-
40
5 Using a stratified random group methodology from a
replicate structured index data base, the All-US–All-
Items Index variance measure (standard error)  for a
1995 6-month price change was ≈ 0.15 as compared to
the design’s final optimal SE of  ≈ 0.08.



                      eijkl ~ N(0, � 2
unit, error),

           with p, h, o and e all independent of each other.

     We can then write (1) in vector notation as

           y = Jµµ + Zγγ + e,  where

                  y  is an  n x 1  vector of the yijkl’s,
                 J  is an  n x 1  vector of 1’s.
                 Z  is a known  n x s  design matrix,
                                 where s = P+H+O
                 γγ = (p1, ... , pP, h1, ... , hH, o1, ... , oO)T,
                        an  s x 1  vector of random effects.
                 e  is an  n x 1  vector of the eijkl’s,
                    P  is the number of psu’s sampled,
                        H  is the number of items sampled,
                        O  is the number of outlets sampled.

     A special case of this model, when there is only one
PSU in the model,  means pi = 0, and the model can be
then written:
                         yijkl = µ + hj + ok + eijkl .

     This special case model applies to all the A-sized
AREAs.  The main model encompasses all the rest:
i.e., the X- and D-sized AREAs.

4.   Choosing a Methodology

     Utilizing this basic linear model, we then have
several choices of methodogies.  First of all, we could
compute the components of variance using an
ANOVA-based structure (Type I Method).  Type I
variance components use a sequential sum of squares
methodology wherein the sum of the sum of squares
for each effect (plus error) adds up to the total sum of
squares of the model exactly.  This is an ordered
model-fitting of effects and the order matters and
should match the underlying reality if the model is to
be meaningful.  Should the effects in the model be
perfectly nested one within the other in a perfect
heirarchical and balanced fashion, then this ANOVA
structure is both sound and useful.  For an unbalanced
design (like the one we have), the analysis does go
through and sums of squares can be calculated, but
there are choices involved that may or may not fit the
reality of the data.   In our case, clearly OUTLETs and
ITEMs fit (nest) within each given PSU.  However,
neither OUTLETs nor ITEMs nest within one or the
other.  All ITEMs are not in each OUTLET and just as
surely, all OUTLETs are not under each ITEM (or
Item-Stratum).  The sample design reality is that

ITEMs and OUTLETs are independently sampled and
then subsequently matched to each other.  The best
(albeit not perfect) order-fitting of these two effects is
ITEM first, then OUTLET.  While it seems more
natural to think of ITEMs being sampled from some
OUTLET, the statistical design reality is that we have
a given set of Item-Strata (the actual ITEMs in the
model) to which OUTLETs are attached.  Our model
universe is an AREA by a MAJ_GRP.  Each Major
Group contains a given set of Item-Strata which can be
modeled as the random effect ITEM.  The OUTLETs
then fit more “naturally” inside these ITEMs.6   Type I
sums of squares are then computed under this
ordering.  The mean squares for each effect and for
error can thus be computed (MS = SS/df).  Whenever
a given effect is treated in the model as random, then
these mean squares are set equal to the Expected Mean
Squares, and the solutions to these equations are the
estimated variance components.  This is one way to
estimate the variance components, a strictly model-
based approach.

     So, what’s wrong with using Type I variance
components from an ANOVA model?  Two things:
(1)  the ordering of the effects is not a clear-cut
decision, indeed cannot be a clear-cut decision unless
the data are balanced and nested, and (2) the Type I
method can easily enough produce negative
components of variance in the effects.  If, for instance,
MSE > MS(O) a negative variance component for
OUTLETs is guaranteed.  These negative variance
components can then be set to zero (since a variance
measure, by definition, cannot be negative), but this is
hardly an ideal solution.

5.  Variance Components Using REML Estimation

     A distributional approach to variance component
estimation involves Maximum Likelihood Estimation
(MLE), or its counterpart, Restricted Maximum
Likelihood (REML) Estimation. We will end up
choosing to use REMLs, in fact weighted REMLs, in
our final analysis, but a quick look at MLEs in tandem
with REMLs can be instructive.  Under easily-had
                                                       
6 We ran a side analysis on this issue.  We computed
numerous sets of variance components, first using the
PSU-ITEM-OUTLET order for the effects-fitting,
then, using the same data, we ran a PSU-OUTLET-
ITEM ordering.  As a control test, we compared these
variance components results with their REML
counterparts.  The P-I-O ordering matched better to
the REML results more than 90% of the time.



regularity conditions, by the multivariate Central
Limit theorem, the vector y will tend to be distributed
multivariate normal.7  Our model remains:
         y = Jµµ + Zγγ + e,  or more simply   y = Jµµ + ηη,

with      y ~ N (µ, V(θ)),  which defines the MLE’s
                                        likelihood joint density, or
      ηη ~ N (0, V(θ)),  which defines the REML’s
                                        likelihood,
                                              with V(θ) defined below.

     Both of these multivariate Normal assumptions are
strengthened by a large enough sample size (which we
have, perforce, because, in our actual work, n > 20 is
guaranteed).  But the MLE procedure tends to ignore
the fact that parameters are being fit (in our case, the
grand mean, µ).  Since REMLs involve finding
maximum likelihood estimates of variance
components from the distribution of the residuals ηη,
instead of from the distribution of y, this extra
parameter µ no longer needs to be fit.  Moreover, its
degree of freedom gets taken into account under the
REML structure, but not under MLE.  This is a bias
correction,8  even though neither MLEs nor REMLs
are in se unbiased estimators.  So REMLs give a truer
maximum likelihood estimation.   Both MLEs and
REMLs are order invariant and, as distributional
constructs, cannot and so do not allow negative
components into their feasibity regions.  For these last
two reasons, we have chosen maximum likelihood
estimation over ANOVA-based estimation for
determining our components of variance, and of the
two maximum likelihood methods, we have chosen
REMLs over MLEs.9

               The  REML  Equations

∑r
j=0 σi

2  tr[Zj Zj
T V–1 (Ι – A0) Zi Zi

T V–1 (Ι – A0)]
               =  YT (Ι – A0)

T V–1 Zi Zi
T (Ι – A0) Y,10

                                                       
7 M. Kendall & A. Stuart (1979), The Advanced
Theory of Statistics, Vol.2 (4th Ed),  p. 59
8 Poduri S.R.S. Rao (1997),  Variance Components
Estimation,  p. 99.   Rao estimates this negative bias to
be – r·σe

2 / n ,  with  r equal to the rank of the design
matrix.  Should more parameters need to be fit in the
model as fixed effects this bias only grows, since r will
only increase.
9 Bayesian Estimation, or Heirarchical Bayes
Estimation, could have been tried.  For a variety of
reasons, we chose not to utilize a Bayesian approach.
10 These equations can be directly programmed in S-
Plus, using simple iteration, and effectively are the

i = 0, …, r.11  That’s it.  We know Y and we know
each Zi.  Z = [Z1 …, Zr] is simply the design matrix,
Z0 = W–1/2, 12 and A0 a projection operator that is
defined below.  V is unknown to begin with, but we
make an initial guess with the σi

2’s, then proceed
iteratively to update the V’s, which in turn calls for a
recalculation of the projection matrix, A0, and when
the σi

2’s converge, we’re done.  Simple iteration
suffices 90% of the time. And only when one of the
variance components is at or very nearly zero does the
initial guess much matter. 13  But then, of course, we
need to understand where these relatively simple
equations come from.

     Christensen, in his chapter on Mixed Models and
Variance Components,14 derives these REML
equations.  The model sets up as above:  y = Jµµ + ηη,
ηη ~ N (0, V(θ)),  θ = (σ0

2, …, σr
2),  V(θ) = ∑r

i=0 σi
2 Zi

Zi
T,  with Z0 Z0

T = W–1 and σ0
2 = σe

2.  Note that the
weight structure (W–1), which is a diagonal matrix that
replaces the unweighted (Ι) structure, attaches very
simply and naturally to the residual component itself,
or alone as an  n x n  Z0Z0

T  matrix whenever and
wherever the algebra calls for it.  The REML
equations themselves are the partial derivatives of the
log likelihood, taken with respect to θ  (µ is fitted first,

                                                                                     
equations used by SAS’ PROC NLP as well.  We used
SAS’ PROC NLP to calculate all our variance
components.
11 For model (1) r = 3; for model (2)  r = 2.  This ‘r’ is
the number of random effects in the model.  The
residual term is σo

2.
12 W is the block diagonal matrix of the Wi,j,k’s from
Section 2.
13 When all variance components are clearly positive,
the choice of initial values is of little import.  A vector
of 1’s will suffice and the S-Plus program will easily
converge in less than 10 iterations.  When one of the
variance components “wants” to be less than zero,
SAS employs special algorithms that pull it back into
the feasibility region.  (We were not able to duplicate
SAS’s results in this second case in the S-Plus
program.)  For the third case, when one of the
variance components is very close to zero, but still
positive, the choice of initial values can be crucial.
SAS uses MINQUE initial values, but ANOVA-based
variance components can be used just as effectively to
achieve the desired quick convergence.
14 R. Christensen (1987),  Plane Answers to Complex
Questions:  The Theory of Linear Models,  pp. 235-
237.



as a fixed effect, using the usual least squares
estimate).  The least squares estimate for ηη is then (Ι –
A)Y, where A is some projection operator onto C(J).
Thus the residuals can be defined up front as (Ι – A)Y,
with the distribution of the residuals written

        (Ι – A)Y  ~  N (0, (Ι – A) V(θ) (Ι – A)T).

     But the likelihood equation cannot quite yet be
derived directly, because this covariance matrix will
invariably be singular.  The likelihood, however, is a
density and a density requires a non-singular
covariance matrix in order to exist.  (Think of
residuals as a null space, living in a world of Lebesgue
measure zero.)  But if we can linearly transform this
Rn space to an Rr space then we are in business.  Well,
we can.  We construct an n x r matrix (B) of rank r
such that  C(B) = C(J)⊥ and BTJ = 0.15  With this B we
then transform our distribution to

       BT(Ι – A)Y  ~  N ( 0,  BT(Ι – A) V(θ) (Ι – A)TB ).

     Then the θ that maximizes BT(Ι – A)Y is exactly
that same θ that maximizes (Ι – A)Y.  But now we
have a measurable density, with its likelihood written
thus:

ƒ(BT(Ι–A)Y | θ)  = (2π)–n/2  | BT(Ι–A) V(θ) (Ι–A)TB |–1/2

          exp [ – YT(Ι–A)T B [ BT (Ι–A) V(θ) (Ι–A)T B ]–1

                          · BT (Ι–A)Y / 2].

     This joint density does exist, since the covariance
matrix is now non-singular, and we use this equation
to derive our partial derivatives:

∂ L / ∂ σi
2 = –½ tr [(BTVB)–1BTZi Zi

TB] +
               ½ YT B (BTVB)–1 BT Zi Zi

T B (BTVB)–1 BT Y.16

     But the likelihood is not dependent on the choice of
B.17  What’s more, we can rewrite these partials
without using any B term.  We know that we can
construct  A = A0 = J (JTV–1J)–1 JT V–1.  Then (Ι – A0)

                                                       
15 To construct B simply calculate a perpendicular
projection operator (PPO) onto the null space of J ( use
(Ι–A) ), and matrix multiply this PPO times an n x r
matrix of white noise, T.  Thus BT = T(Ι–A).
16 See Christensen, p. 231, for the four matrix
differentiation results needed to derive these partial
derivatives.  (See Schott, Matrix Analysis for
Statistics, pp. 332-333 for complete proof of the fourth
matrix differentiation result.)
17 Ibid, Christensen,  p. 234.

is the projection operator onto C(VB) along C(J).18

What’s more,  (Ι – A0) = VB(BTVB)–1BT.19  This
equivalency allows us to rewrite the partial derivatives
entirely without a B term.
         tr [ V–1(Ι – A0) Zi Zi

T ]
             =  YT (Ι – A0)

T V–1 Zi Zi
T V–1 (Ι – A0) Y.

     Finally, since (Ι – A0) is idempotent we can expand
the LHS in such a way as to separate out our variance
components as proper random variables, while at the

same time keeping their respective s'ˆ 2
iσ in V. Thus

we get

  tr [ V–1(Ι – A0) Zi Zi
T ]

      =  tr [ V–1(Ι – A0)VV–1(Ι – A0) Zi
 Zi

T ]
      =  tr [ VV–1 (Ι – A0) Zi

 Zi
T V–1(Ι – A0) ]

      =  tr [ (∑r
j=0 

 σi
2 Zj Zj

T) V–1(Ι – A0) Zi
 Zi

T V–1(Ι –
A0)
      =  ∑r

j=0 σi
2  tr [ Zj Zj

T V–1 (Ι–A0) Zi Zi
T V–1 (Ι–A0) ],

20

and we have derived the working equations for our
REML estimation,

∑r
j=0 σi

2  tr[Zj Zj
T V–1 (Ι – A0) Zi Zi

T V–1 (Ι – A0)]
              =  YT (Ι – A0)

T V–1 Zi Zi
T (Ι – A0) Y,

and we are done.

Results and Conclusions

     Price data from the C&S Archive Database, from
mid-1993 through mid-1997, were carefully compiled
and massaged, month by month, into one very large
dataset.  Pricing periods were carefully noted and
charted, so that only like price quotes were tracked to
each other over time.  We then drew on this new
database to produce 2-, 6- and 12-month variance
components.  The 6-month results, for a variety of
reasons, were the chosen variance components of
record.  The 2-month price changes were considered
too variable and maintaining a high enough level of
sample size over these 12-month periods was
considered too difficult.  Moreover, no month per cell
(AREA by MAJ_GRP) that held fewer than 20 quotes
was used in the final results.  For the 6-month
variance components the average sample size was
around 80 quotes for all AREAs except the X’s, which
averaged around 400 quotes per cell.  For the final
                                                       
18 Ibid,  p. 236.
19 Ibid,  p. 237.
20 Ibid,  p. 237.



variance components we simply averaged all the good
results across time (mean # of time periods = 20) per
cell.  By using PROC MIXED in SAS to produce our
REML estimates, we also got standard errors for each
of our variance components.  The CV’s (using mean
standard errors over mean variance components) for
most of our results were below 1, though these CV’s
fluctuated somewhat wildly.  Some summary statistics
on the full table of variance components (over 1500 in
all) are presented below:

Table 1.   Average Variance Components
                  All MAJ_GRPs – All AREAs

ITEM OUTL   PSU
Non–A

Resid

AveVC 0.0057 0.0089 0.0113 0.001
AveSE 0.0055 0.0048 0.0022 0.002

Table 2.   Average Variance Components
                        by  MAJOR_GROUP

MAJOR GROUP
Mean
Total

Variance
Food – Staples 0.0304
Food – Meats 0.0479
Food – Fruits & Vegetables 0.0689
Food – Other 0.0276
Food Away from Home 0.0158
Entertainment 0.0175
Apparel 0.0399
Household Furnishings 0.0191
Utilities & Fuel 0.0134
Transportation 0.0197
Gasoline 0.0129
Medical 0.0146
Education & Communications 0.0093
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