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1) INTRODUCTION 

In survey sampling problems data is usually 
being collected on many study variables, some of which 
(variables of primary interesO are positively correlated 
with the sample design variable(s) and other variables 
which are not (,peripheral variates). A sample design 
which is nearly optimal for estimating (via Horvitz- 
Thompson, HT) the means of those variates which are 
positively correlated with the design variable may be 
extremely inefficient for estimating (via HT) means of 
peripheral variates. This problem can be addressed by 
post stratifying on one or more other variates which are 
cormla~d with the peripheral variates being gathered 
from the sample units. This paper describes a way of 
building an estimator, which makes use of these other 
sources of data together with the relationships between 
these data items to reduce the error of estimates of 
peripheral variate means. 

The class of estimators to be built are 

Let Yi = (ai • ti), then a i is known for all ieU (the 
population), t i is unknown for all i not in the sample 
(s), and for each ies some subset of the components of t i 
is known and this subset varies from sample member to 
sample member (item nomesponse). 

4) Suppose it is appropriate to describe every 
Yi (whether its components are observed or no0 in the 
population as the outcome of a vector valued random 
variable ,Y=(A,T), with mean tt =(J~tA,tt T) and 
varianceJcovariance matrix Z. Thus the {Yi} are the 
outcomes of independent and identically distributed 
random variables {Yi}, each distributed as Y--( l.t, Z). 

Using only the data outlined in I) through 3) 
and data relationships described in 4), an estimator of 
the target means (ttT) that minimizes expected squared 
distance between itself and tt T is constructed. 
Expectation is over the distribution generated by the 
distribution of Y (which can include the sampling 
distribution and, if known, the response mechanism). 

The solution descn~ here is a direct 

generally multivariate and utilize data dependencies, application of the Gauss Markov theorem. The 
that can be captured in a covariance matrix. These estimator is linear in the available data and unbiased in 
estimators minimize /vISE in the presence of the appropriate space. With these constraints, 
nonresponse, response bias, and weak relationships knowledge of second moments of Y (Z) will be enough 
with the sample design variables. Since they directly to construct a best (minimum variance) solution to the 
use the type of data dependencies that are exploited by . problem of estimating l.t T. This solution is also 
composite, Bayes, ratio, and regression estimation, they 
can achieve, by default, the same reductions in mean 
square error that these techniques also provide. The 
same is true about nonresponse adjustment, the 
information that is used to pc~orrn this operation is 
also included in the estimation process. 

A vector of finite population means (target 
means) of the study variables (target variables) is to be 
estimated under the following setup. 

1) A sampling frame which identifies 
members of the finite population and contains 
quantitative data on a fixed set of characteristics 
(auxiliary variables) for each population unit. 

2) From this sampling flame, a sample is 
selected. This sample may be selected by a known 
randomization ~ u r e ,  possibly a function of the 
auxiliary data. A stratified, clustered, multistage 
sample is the general rule. 

3) For each member of the sample, some 
subset of the target variables is observed and this subset 
may vary from sample member to sample member 
(item nomesponse). Let a i be the row vector of 
auxiliary variables attached to the i th member of the 
population and let t i be the row vector of target 

Maximum Likelihood given the missing sample data 
(see Little & Rubin 1987) and a timed point of the EM- 
algorithm. 

In repeated surveys, Z may be estimated from 
historical data and relatively stable over time as the 
expected values of the targets and auxiliaries change. In 
such cases, it may be appropriate to use this estimate of 
X as the actual quantity. X may be derived from 
supertx~ulafion models, sampling distributions, or 
combinations of both. The sample indicator function 
and possibly the response indicator functions may be 
tre.zl~ as auxiliary (poststratification) variables. Using 
sample and response indicator variables in this way 
provides the sampler with a way to adjust for 
nonignorable non response (& response bias) in cases 
where the nomesponse mechanism can be given an 
accurate stochastic description. 

Result I in section 3 quantifies the effect on 
MSE of deleting some of the target variables from the 
data structure, described above for Y. Result 2 in 
section 3 quantifies the effect on MSE of deleting 
auxiliary variables from Y. The theory 
presented here is applied in the Johnson, Woodruff 
(1990) paper. 
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2) B U I L D I N G  A N  ESTIMATOR 
a) An Example- S ~ ,  the problem is to 
estimate the number of production workers and women 
workers in a small indusuT. A simple random sample 
of three of the 26 firms in this indusu'y was se.lccmd but 
the firms in this sample wee less than ~ v e .  
Only one firm provided both the numbers of its 
Im3ducdon workers (P) and its women woxkm's (W), 
one gave dam on only women workers and one gave 
only production worlmrs. In addition, the total 
employment (E) in each firm in this industry is known 
as is the matrix of variances and covariances for and 
between the random variables ~ i n g  total 
employment (E), women workers (W) and production 
workers (P). This sample dam (ouw, cxnes of (E,W£')) 
a r~ :  

E W P 
1 92 35 71 
2 90 44 - 
3 85 - 75 

The average employment in this industry is 76 
and the variance/covariance matrix of (E,W,P) is: 

131 101 120 / 

~,170 120 190J 

Note that all three employment variables are 
positively correlated. Employment (E) in this example 
is the auxiliary variable and the pa~, (Women 
Workers, Production Workers) = (W,P) are the target 
variables. 

Suppose (E,W,P) are approximately normally 
distributed. Since the average employment in the 
industry is 76, the data on the variables of interest from 
all three sample members are positively biased and 
everything needed to compute the bias (conditional on 
the known Employment dam) in the observed values of 
W and P for each sample member is at hand. These 
biases (under normality) for a sample member are the 
sample member's employment minus 76 times .64 for 
W and times .83 for P (for example, the bias in W for 
firm one is 10.24 and the bias in P is 1328). The 
coefficients, .64 and .83, come from the expression for 
conditional expectation of the targets given the 
auxiliary variable under multivariate normality. The 
vector (.64, .83) results from multiplying the reciprocal 
of the (1,1) component of the covariance matrix, 1/7235 
, by the row, (131,170). 

Subtract these biases from the obsezved 
measurements on the targets to get bias adjusted 
obsercations. 
Establishment W p 

1 24.76 57.72 

Q 
Q 

2 35.04 - -  
3 - - -  67.53 

These bias adjusted variables are now more 
appropriately thought of as outcomes of lid random 
vectors with the target mean as their common expected 
value and with a common vatiance/covatiance matrix 
that measures a smaller dispersion ammut this target 
mean. This new (conditional) variance/covariance 

matrix is ~11.37 49.02) as opposed to k120 190 

prior to conditioning on E. 
The responding item means of the adjuste~ 

data would be unbiased estimates of the target means. 
These target means may also be estimated by imputing 
for the missing data items and taking the column 
means of both adjusted and imputed data. This second 
estimate of the target means would have a smaller 
variance than the first. Finally, by al~lying the EM- 
algorithm under normality to reimpum and reestimate 
until convergence a third estimate is obtained with a 
smaller variance than either of the two above. In this 
example, this estimate under the EM-algorithm 
converges to (30.288, 64.188). When the 
vadanceJcovadance matrix is known (as in this 
example) and must not be reestimate~ with each 
iteration of the EM-algorithm, there is a dixe~ closed 
form solution that yields exactly the same resuk as the 
EM-algorithm. This is done via the Crauss theorem on 
minimum variance estimation by using the following 
linear relation between the bias adjusted data and the 
target mean, ~. 

24+51 'i 57. 

35. 

67.53) 

I 
17.29 0 0 

11i37 0 0 
17.29 0 

0 49.02 

where Var(~)= 

0 

i P .T+8 

11.37 

49.02 

0 

0 

and E(e)--o. 
Rewriting this as 

where 
,Y = XI.tT + ~ 

Vat'(E)= Z, we get: ~T = (X' Z-1X) -1X' Z-1Y = 

(30.288, 64.188)', exactly as with the EM-algofithm. 
The observed data maximum likelihood 

estimator (MLE) as described in Chapter 7 of Little k 
Rubin is, under normality, the GLS ~ [ o r ,  

~t T = (X' E-1X) -1X'  E-IY.  This estimate is also a 
fixed point of the EM-algorithm by the theorems in the 
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theory section of this chapter. Thus the Normal EM- 
algorithm with E known will convc=gc m the 
s'iv~ above. 
b) Generalization of the Example in a)- 

There m'e two p ~  to ~ o n  once d~ 
se~ of appmpriam mrg~ variables and auxilim'y 
variables has been dem'mmed. Phase one is 
posmncificafion on the awdliary ~ l e s  (using the 
r ~ ~ o n  ad~m~ms  under conditionality). 
two is ~uival~t  m imputation and escim~on wid~om 
explicitly going fire, ugh the coml~l~ional rigors of file 
EM-algcdthm. 

The available dam on d~e population c~ 
inxnv.s~ is r e lm~md as the ~ oamome of an 
NxCc~+kt) ~ W of random ~ k s .  N= 
number of uni~ in the popula~n, ]c a = ~h¢ number af 
auxiliary ~ l e s ,  k t = the number of mrge~ ~ 1 ¢ ~ ,  
and n= the rumple size. The i thmw of W c.onmin$ the 
random vm-iable.s (auxiliaries and targets) associal~ 
wkh ~h¢ i th popul~on uah. 

By d~fini~n, the aur, fliz~ ~ e s  are 
known for all population units and the target vadable 
ouw.omes are observed only for rumple ~ and, due w 
nonmspon~, we may observe only a subset of the k~. 
mrge.~ far each sample unk and this ~a~t ~ ~  from 
uait m unit.. 

I.~t Yi = (Ai , TO, the i th mw vectar of W 

and X i ffi , Yi ° = (Ai, Tizi), = 
Zi 

( I  o 0)=(Ai, Ti)Xi. (A i , Ti ) Zi 

Let e i model the differmce ~ r~-_-~ 
and expected values of the compcmmm at" Y~", fl~n: 

Y7 ffi(gtA, ~tT)Xi +ei"  

All available infanna~on ( p o l m ~ m  dam 
sample dam, and the smc~m~ic ~ , ~ ~ ' m s  
them) is ~ , ~ , ~ - ~  in a ~ m ~  

(Y~, Y~, Y~ . . . . . .  'in°)= 

(].tA, ].tT)(Xl, X2, X3 ...... Xn) 

where ( e l '  e2 'e3  . . . . . . .  en )-N(0" ]: 0 )' 
Y 

EyO is the block d~ml ~ of ~{X i' ~X i }, 

a n d Z  is the covm'knce man~ c~ ~he ~ ,  (Ai,Ti). 
Writing this in COml~Ct form : yo= I~X + e whcm~ e 

has mean zezo and covafinnce man-ix Z y0. 

' Now anxilim'y ~les are reed to Mjust for 
~hc peculim'ifies of ~h¢ realized rumple (and possibly 
rmpome bias) This is done by post szr~_~~n on 

containing the two random veclors A i , the Ixk a vecu~ 
of atmiliaries (oumomes known), and T i, me ix~ Thea by a Im:medum rhal is similar m impm~cm or the 
random veaor of target vm-iables, the o~mom¢~ of ...EM-algorithm, the observed dam imms are used m 

c o ~  for mi.m~, g dam. 
which may b¢ unknown (if i is no~ a sample member) ~zZTAA ) 
or ~ y  known ff i is a sample member. From ~ I.¢t Z = ZAT whe~ ~ A is 

ZT ' point on, re~finc i slightly m dehorn only smmplc 
nmmbem, i runs fzom 1 to n (tim sample size) sinc~ 
only sample membc~ will be considm~l in what 
fdlow~ 

The obscrv~ ~ and all tl~ nnxilimy 
~ l e s  for ~ i th sample unic am the compomm~ of 
the ~ of the mndom 

vcxm~. Y~ = (Ai, TiZi ), wh¢~ Zi is the respcmse 

indicator roan'ix far am row ~ of ~ variables 
T i amr.he, d m ~ i th sample uniL Zi is 
from ~ ~ ~ of ord= k~ (the number ¢f 

~ l ~ s )  by deleing ~ colnmn j of 
~ t y  ~ far which the ~h ~ ~ l e  is a 
n ~ n s e .  Thus ~" contains the i th units' 

auxiliary variables and ¢mly ~hose target vmriable$ 
observed for the i ~ unit. ~ g  I be the ideafiW 
ma~-ix of ord~ k a (the number of atmiliary v-~i~le$) 

• .,z~mc~cov'mSanc~ manix of a T i . and ~AT is the 
manix of covm'knces between A i and Ti . .  The 

value of Yi=(Ai, T i) is ~ ( ] . t  A ;],t v ), and by 
defininon ~A is known. When Y is mulfivm-iam 
normal ~ condi~nal p n ~ n ~ s  of the m ~  
normal dism-m~on am exploimd m make inferences 
abom ~ Imsed on the conditional ~ af tie 
mrs~ ~ m  given the ama'R~y vambt~s. 

E(T~ 1,4, = a , )  = ~'r + (a, - tt~ ) Z ~ Z # .  Ttz 
walue of T i is i , , f l , , ~ ~  by ffs 

, , m ~ r y  om~om~ A , ~ .  This ~ ~ ,~ea  ai. 
~ta, and E ~ all known, the ~ dam ~ l~ 
n-anslamd as follows: 

tJ~ conditional e~pec.~ value of z i giv= ~-=a i is ~t r 
, r~quanf iv /m b e ~  The {Zi} ~ ~ o n  
[£r and the dispersion of the {Zi} about [£r is fighzer 
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by ~rAE~ ! EAT; that is, the conditional 
varianceJcovariance matrix of (ZilAi=a i) is 

z8 =ET- ZTAE:, E . 
The observed comtments of Z i (responses) are 

separated f~em the unobserved components (non 
responses) by post multiplying Z i by Xi and in order to 
avoid introducing another variable name, now let 

Zi= [T~ - ( A ,  - ~ t  A )Z~t~Zar ]Xi , (2.0) 
then E tAi)= trZi and VCZitAi)= 

Zi'(~r " ~ r ~ A ~ L r ) Z i  --'--'~i~i" Letting ~i model 
the difference between the reai/zed and ~ t e d  value 
of (ZilAi): 

Zi= BtZi+~i and summarizing over all sample 
units: 
(Zl, Z2, .... Zn) --" lJ't (Zl, Z2 ..... Xn) 

+(~1, ~ 2 , ' ' "  8n) 
or Z=IJ.rX + 8, (2.1) 
where 8 has mean zero and covariance matrix 7.. z . 
and E z is the block diagonal matrix of the {X~EaXI }, 

0 . . 

0 Z2 :8 '2 0 . 

• 0 • • 

0 . . 0 

0 '~ 

o 

0 

X,,EsZ',, ., 

From (2.1), the generalized least squares 
(GLS) estimator for IJ. r is: 

^ = (~: ,~: . The 

of (XZ: X ' 
This estimator seems to ignore the sampling 

distribution. As explained in the next section, the 
sampling distribution is often implicitly included in the 
estimation process. Section 3 contains two results (or 
theorems) which quantify the effect on bias and 
variance of omitting target and auxiliary variables from 
the construction of the estimator outlined above. 
3) S T R U ~ E  THEOREMS 

Let Af(A 1,A2), and T = (T1,T 2) be partitions 
of A and T into s u b v ~  In this section, two results 
are proved which, quantify the effect on MSE of 
deleting the data on T ~ from W and the construction of 
the GLS for I.tr~= Ecr 1) and the effect on MSE of 

deleting the data on A 2 from the construction of the 
GLS for ~t T = EO'). Superscripts denote subvectors. 

Bias and variance of the GLS estimators under 
these two forms of reduced data structure are 

evaluated with respect to the probability space that 
these Gl.~s inherit from the stochastic structure on 
(A,T) and all the data on these variates. 
Definition 1. A 2 is redundant for estimating I~T if 
and only ff the conditional random vector, T given A1,  
is independent of , A 2 given A 1 , 
[ (TIA ~ ).L(A21A ~ )]. 
Definition 2. T 2 is ~ d a n t  for estimating IJ.T~ if 

and only ff T 2 given A, is independent of T 1 given A 

[ (T~IA) .L(T21A)] .  
This last definition is reciprocal, it also 

implies that T1 is redundant for estimating I.l.~ • 

A target or auxifiary variable is redundant for 
estimating a particular target mean if neither its 
inclusion in nor omission from the consm~ction of the 
GLS has any effect on the estimator of that target 
m e a n .  

Definition 3. A variate (or vector of variates) that is 
not redundant is called pertinent. 

The next two results are the structure 
theorems. Their proofs in the case of multivariate 
normality are by direct computation and the Gauss (- 

. Markov) theorem on minimum variance estimation. 
Bias and variance of these "deleted" GLS estimators are 
with respect to the full stochastic structure on (A,T), all 
the data on these variates, and conditioned on the 
known sample outcomes for A. The proofs below 
depend on (and possibly clarify) this last statement. 

. Result I - Deleting pertinent target variables, T 2 from 
W. will increase the variance of the components of 

A 

~tr~t ,  the GLS for J.LT1 compared to the variance of 

the corresponding components of ~ and will have 
no effect on their bias. 
Proof of 1 

a) By ~ g i n g  the components of Z, (2.1) 
can be rewritten with block diagonal X-matrix as: 

Z=(ZI ' z2 )= (BTI ' t tT2 ) (Z~I  Z220 )+(81,82)(3.1)  

where Z 1 contains o~y members of the first set of 
target variables, T 1, Z 2 contains only members of the 
second set of targets, T 2 , and the covariance matrix of 

(~1,82) is ~y21 ~z2 ' a rea3mangement of Y-'z. 

b) Note that by ignoring T 2 in the construction 
of (3.1) we would have: 

z l  =/2r,  Zll  + ~ 1 (3.2) 

where the variance/coy•fiance matrix of ~1 
islE11. 
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e) The GLS for ]2 r, under (3.2) is /2r, ~. It is 

linear and unbiased under (3.1). By the Cmnss 
theorem, the first T 1 components of ~ are minimum 
variance linear unbiased for ]274 under (3.1). 

Therefore, V ( ~ . ~ )  ~ V ( ~ r ,  ta ) where Q is the 

matrix of zen~ and ones that picks out the T 1 

components of ~TIA , V denotes variance of the 

enclosed vector, and < is component by component 
comparison. 

Finally, since E ( ~ r , ~ t )  = E ( ~ Q )  under 
(3.1), deleting targets has no effect on bias. END PF1. 
Corollary 
F~n~Q = f%~ ¢~ Cov(r ' ,T21A)  = O. This 
corollary shows that the definition of redundant target 
variable makes sense; when T 2 is redundant, the 
estimate of I~rt can borrow no strength from data on 
T 2 . 

]Result 2. - Let ]271, 0 be the GLS for the mean of T 

when the auxiliary variables in A 2 are omitted fixnn W 
and the estimator construction described in the previous 
section. Conditional on A-(A1,A2), V a r ( ~ , ~  . 

Var(~Lrt a) and ~ZnA, is a biased estimate for the mean 

of T, ~ r .  ">" is component by component 
c o m p ~ n .  
Proof of 2 

Let the varianceJcovariance 
(A,T)=(A I,A2,T) be: 

( E ~  Z~2 Z~T 

E = / E r a  Z22 Z2T . Then ignoring A 2 and 

~ET1 ET2 ETr 
$ 

conditioning on A1 alone, the analog to Z i is Z i = 
1 it h W i - ( a~ -~1 . ,  )~:1~:1T , where a i is the unit's 

realized value for A 1 and ~l.t is the exlx~ted value of 

A 1. The varianceJcovariance matrix of Z~ is 

]ETT -- Y'T~ ]Ex~ ~ T "  The varianceJcovariance mau'ix, 
Z z , given in (2.2) for the vector 
z=(z~.z2,z3 ............ ,Zn) has 
ZO • • lid • = ( Z ,  ,Z2 ,Z 3, ........ ,Z . ) ,  
,Z z" and is given by 

Zs = Zs. = ZTT -- ZT~ ZI-~ Z~T" 

an analog for 
that is denoted 

(2.2) with 

Conditioning on 

[(aI - !~ ~),(a 2 [E,t 
- ~,~ )lie2, 

'rZ T 
Z22 Lz2T] 

= (a] - Ix., ) Z~'~ Z,T + (a I - It. d )GFG' Z,T 

- ( a I  - I.t~ ) G F ~ 2 T  - (a 2 - Ix.2 )FG'  E,T 

+(a  2 - B,2 )F~2T 
)-I 

whereG = Z i ~ Z i 2 , F  = (Z22 - Z21Z~'~Zt2 . 0 
2 denotes transpose, and at and I.t,z are defined 

1 analogously to a t and ~l.d. Thus the difference in bias 

adjustment between conditioning on A and 
conditioning on A1 alone is given by:. 

I 
D i f f  i = (a  i -- ~t,, )GFG'  EIr  -- (a~ - It.,, ) G l ~ z r  - 

2 (ai 2 - g , ~  )FG'  E1T + (a  t - - I . t ,  )F~z r  = 

s 

Z i - Z i, 
Conditioning on both A1 and A 2, Diff i is the 

bias in Z t when A 2 is ignored. Let D = 
( D i f f l z  I ,D i f f2z  2 , . . . . . . . . . . .  ,D i f f ,  z . ),  then, after 

deleting the nomes~nses from Z i and Z i , (see 2.0) 
and forming Z and Z*,  

Z*=Z + D. The GLS given both A1 and A 2 is: 

~v~  = Z~zXZ ' (Z~z lZ  ' )-x , and the GLS ignoring 

matrix of ' A2 is: 
~r~' = CZ + D)E~ X' (ZZz x. Z' )-'= 

-~Z' )-1+ (ZZ~ 
7 ~  z. (XEz ~- Z' DEz'- Z' X' )-' = 

-~ z' ( z z ~  z' )-~ 7 ~ z .  + BIAS,  where 

conditional on both A I and A 2 , BIAS is the constant 

DZ~'. Z' (ZZ z t Z' )-~. The ~ . c ~ c o ~ . n c ~  
matrix of ~, given A is the varianceJcovariance of 

-IZ, Z-IZ,)-I 7~z. (Z z" conditional on A=(AI,A2), and 
this matrix is 

-1Z, Z-1Z')-I 
(ZZzl. X, )-I Zy~z,.BZZz. (Z z" . Note that 
term-by-term, the diagonal 0£ 

Z' Z' )-1 
(Z~: ~ ~, ) -1ZZz 1. ZZy~z ~ (Z$:z I. is greater 

than the diagonal of ( Z ~ z l Z ' )  -l , the 

variance/covariance matrix of ~ . This inequality 

follows because ~v~  is the GLS conditional on A and 

both subvectors of A, T i uansforms to Z i by subtracting 
the following expression from T i. 
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Z ~  z 1. ~' (XI: z 1. ~:' )-1 is linear and unbiased. 

Thus MSE(~TIAt) = 

(~Z z 1. ~' )-1 Z-I -1 ~, ~, )-1 z.ZZZz. (~Zz 1. + 
03IAS)'(BIAS) 

and the diagonal elements of the first term in this MSE 
are greater than the corresponding diagonal elements of 

^ 

Var(tt~A). 
~ID Pf2 

-1 ~, Z-1 Z' )-1 Z~z.  (Z z" in the above proof is an unbiased 

estimate of the mean of T but, conditional on 
A=(A 1,A2), this estimator has less than optimal weight 

-1 Z' Z' )-1 vectors, I:z. (ZZz 1. , and thus a larger 

variance than ~tTiAt. GLS estimators are generally 

robust against misspecification of the optimal weight 

Vectors, ZZ 1~' (~ZZ 1 ~' )-1 • In these cases, the 
increase in MSE due to omitting pertinent auxiliary 
variables is dominated by bias and the additional 
variance due to using the wrong weight vectors is 
relatively negligible. 
Corollary - Diff i =0 ¢:# Cov[(A2,T)IA1]--0. Thus 
the definition of redundant ( not pertinen0 auxiliary 
variable at the beginning of this section makes sense. 

In summary, target variables control variance 
and auxiliary variables control mostly bias. There are 
three ways to reduce variance: increase the sample 
size, increase the number of pertinent target variables 
in T, and increase the number of pertinent auxiliary 
variables in A. Increasing the number of pertinent 
auxiliary variables can reduce bias. 

If one includes target or auxiliary variables in 
the data structure (data matrix, W) that are redundant 
for a particular target mean, then the GLS estimator of 
that target mean is algebraically identical to the GLS 
estimator derived from the data structure, W, that 
excludes them but in every other way is the same. This 
means that there is no penalty (except possibly 
computer time) for including unnecessary (redundant) 
variables in the data matrix, W. In particular, the 
sampling distribution may be included in the estimation 
process by using the sample indicator function as an 
auxiliary variable, but in many common situations it 
will prove to be redundant. Many estimators which 
seem to ignore the sampling distribution implicitly use 
it through other auxiliary variables in the data matrix 
that already contain all the pertinent information that 
the sample indicator provides. 

The observed data maximum likelihood 
estimator (MLE) as described in Chapter 7 of Little and 
Rubin is, under normality, the GLS estimator, 

^ -1 , . This estimator is also a #,,d = ZZ, Z (ZZ~lZ') -1 
fixed point of the EM-algorithm (see theorems in the 
theory section of that chapter). Thus the Normal EM- 
algorithm with Z given, will converge to this GLS. 
The GLS estimator contains it's own nonresponse 
adjustment by default. 
5) CONCLUSIONS 

Although the sampling distribution is a 
necessary part of inference from sample survey data, it 
is rarely sufficient because of many features of applied 
sampling. These features include nonresponse, 
response bias, and data relationships that make applied 
sampling a multivariate discipline where univariate 
methods generally fail to produce optimal inferences. 
In spite of this, sample survey inference has remained 
largely univariate with an encyclopedia of corrective 
techniques to handle these negative features of sample 
data. 

This paper discussed theory and applications 
of multivariate methods for estimating finite population 
mean vectors assuming data deficiencies like 
nonresponse (both item and total, ignorable and 
otherwise) and response bias, but exploiting data 
dependencies modeled by the covariance matrix of 
survey variables (both design and target variables). 
These data dependencies are used to minimize mean 
square error in the presence of the data deficiencies. 
The estimator so derived automatically handles many 
missing data problems that practitioners face by fully 
exploiting known data dependencies. Its use is 
indicated in repeated surveys where nonresponse is a 
problem and strong data dependencies are present. 

The theory presented here is at least two 
centuries old, Gauss (1809). Sampling theory is much 
newer; its standard methodologies work and can be 
applied with primitive computational aids (say 1950s 
technology). The material presented here would have 
been totally impractical in 1950 but in the 1990s the 
computer revolution has made Gauss' methods quite 
practical. Present day computers allow instant 
availability of huge supplementary data bases and the 
computational power to make short work of complex 
estimators. The estimation process described in this 
paper is applied in Johnson and Woodruff (1990). 
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