Tracking Changes in Ride-hailing/Ride-sharing Expenditures

David A Poyer (Morehouse College) and Thomas SStephens (Argonne National Lab) 2018 Consumer Expenditure Surveys Mic rodata Users' Workshop
Bureau of Labor Statistics

Wa shington, D.C.
J uly 20, 2018

Research Objectives

- Assess the relationship between "ride-hailing/ride-sharing" and other expenditure categories.
- How do other confounding factors (relative prices, income and demographic changes) affect the relationship?
- How may the use of Consumer Expenditure Survey data help inform these issues?
- What is the "ride-hailing/ride-sharing" expenditure share?
- How has it changed overtime?
- What type of good is it?

Consumer Expenditure Public Use Microdata Files: 2008 to 2016

- Consumer Unit (CU) Characteristic sand Income File (FML)

1. Total Expenditures
2. Transportation Expenditures
3. Demographic Information

- Monthly Expenditure File (MTBI)

1. Detailed Public-Transportation Expenditures

Expenditure Categories/SubCategories

- Transportation Expenditures

1. New Vehicles
2. Used Vehicles
3. Other Vehicles
4. Gasoline and MotorOil
5. Vehicle Finance Charges
6. Maintenance and Repair
7. Vehicle Insurance
8. Vehicle Rental
9. Public and Other Transportation

Public and Other Transportation Expenditures

1. Airline fares
2. Intercity bus fares
3. Intracity mass transit fares
4. Local trans. on out-of-town trips
5. Taxi fa res a nd limousine services on trips
6. Taxi fares and limousine services (ride-hailing/ride-sharing)
7. Interc ity tra in fares
8. Ship fares
9. School bus

Public Transportation Expenditure Sha re of Total Transportation Expenditures

Expenditure Share of Total Transportation
Expenditures

Source: Va rious CE PUMD files, Bureau of Labor Statistics (these are unweighted shares for all Consumer Units)

Percent of C onsumer Units Reporting "Taxi fares and Limousine services" Expend itures

Source: Various CE PUMD files, Bureau of Labor Statistics (these are unweighted shares for all Consumer Units)

"Intra city Mass Tra nsit Fa res," a nd "Taxi Fa res a nd Limousine Services" Sha res of Total Public Tra nsportation Expenditure

Mass Transit and Ride Share Sha res of Total Public
Transportation Expenditures

Source: Va rious CE PUMD files, Bureau of Labor Statistics (these are unweighted shares for all Consumer Units)

2016 Distribution of Ride-Sharing Expenditures

Variable	Obs	Mean	Std. Dev.	Min	Max
Ride Sharing	1,413	$\$ 450.26$	$\$ 715.43$	$\$ 6.67$	$\$ 8,000.00$

Cumulative Distribution: Taxi fares and limousine servic es expend itures

Normalized Real Expenditures perCU: Total Expenditures, Transportation Expenditures, and Taxi Fares and Limousine Services (Ride Sharing)

Normalized Expenditures

Source: Derived from Various CE PUMD files, Bureau of Labor Statistics (unweighted values for all Consumer Units)

The Engle Curve

Properties

1. Satisfies the adding-up constraint (shares add up to one)
2. Individual share equations can be estimated using simple least squares

$$
\widehat{w}_{i}=\hat{\alpha}_{i}+\hat{\beta}_{i} \ln y
$$

Where \widehat{w}_{i} is the estimated share of the $i^{\text {th }}$ good; lny the natural log of total expenditures; where $\sum \hat{\alpha}_{i}=1$ and $\sum \widehat{\beta}_{i}=0$.

- $\hat{\beta}_{i}>0$: luxury good
- $\hat{\beta}_{i}=0$: necessity good
- $\hat{\beta}_{i}<0$: inferiorgood

Estimated Share Equations for "Taxi Fares and Limousine Servic es" for 2008 and 2016

2008						
	Robust		t	$P>t$	[95\% Conf. Interval]	
Taxi/ Limousine Share	Coef.	Std. Err.				
Log of total Expenditures	-8.8E-05	3.02E-05	-2.9	0.004	-0.00015	-2.9E-05
Rural x Log of total Expenditures	0.002455	0.001652	1.49	0.137	-0.00078	0.005693
Intercept						
Rural	-0.00022	0.000172	-1.3	0.193	-0.00056	0.000114
Constant	0.001083	0.000286	3.79	0	0.000524	0.001643
2016						
		Robust				
Taxi/Limousine Share	Coef.	Std. Err.	t	$P>t$	[95\% Conf. Interval]	
Log of total Expenditures	-0.0002	5.38E-05	-3.8	0	-0.00031	-9.9E-05
Rural \times Log of total Expenditures	0.002158	0.002587	0.83	0.404	-0.00291	0.007228
Intercept						
Rural	-0.00022	0.000276	-0.78	0.435	-0.00076	0.000326
Constant	0.002469	0.00052	4.75	0	0.001449	0.003488

Predicted "Taxi Fares and Limousine Services" Shares versus Total Expenditures

Estimated Engle Curves: 2008 to 2016

Year	Airline fares (530110)	Intracity mass transit fares (530311)	Taxi fares and limousine services
2008	$\mathbf{0 . 0 0 4 0 3}$	$\mathbf{- 0 . 0 0 1 8 8}$	(530412)
	(0.00020)	(0.00042)	$\mathbf{- 0 . 0 0 0 0 9}$
2010	$\mathbf{0 . 0 0 3 9 5}$	$\mathbf{- 0 . 0 0 1 5 3}$	(0.00003)
	(0.00018)	(0.00018)	$\mathbf{- 0 . 0 0 0 1 9}$
2012	$\mathbf{0 . 0 0 4 1 1}$	$\mathbf{- 0 . 0 0 1 3 2}$	$\mathbf{(0 . 0 0 0 0 4)}$
	(0.00019)	(0.00015)	(0.00004)
2014	$\mathbf{0 . 0 0 4 3 5}$	$\mathbf{- 0 . 0 0 1 4 4}$	$\mathbf{- 0 . 0 0 0 1 4}$
	(0.00021)	(0.00016)	(0.00004)
2016	$\mathbf{0 . 0 0 4 1 1}$	$\mathbf{- 0 . 0 0 1 2 5}$	$\mathbf{- 0 . 0 0 0 2 0}$
	(0.00020)	(0.00025)	(0.00005)

[^0]
Find ings and Prelimina ry Thoughts

- From 2008 to 2016, there has been a substantial increase in a verage "taxi fares and limousine service" expenditures.
- Driven in part by an increase in use by CUs
- Between 2008 and 2016, the "taxi fares and limousine service" expenditure share has increased substantially.
- The estimated Engle curvesfor "taxi fares and limousine service" indicate that it is an inferior good.
- Unanswered questions:
- Do demographic factors affect "taxi fares and limousine service" expenditures and pattems of transportation use in general?
- To what extent does urbanization, age composition and household debt changes influence ride sharing/ride hailing expenditures?
- Can we say more on if changes in the use of ride-sharing/ride-hailing services affect the overall pattem/composition in transportation expenditures?

Literature

- Deaton, Angus, and John Muellbauer. Economics and Consumer Behavior. Cambridge: Cambridge University Press, 1988.
- Leser, C. E. V. "Forms of Engel functions." Ec onometric a, 1963: 694-703.
- Working, H. "Statistic al la ws of fa mily expend itures." J oumal of the Americ an Statistic al Assoc iation, 1943: 43-56.

Acknowledgments

- This presentation and the work described were sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Offic e (VTO) under the Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Laboratory Consortium, an initiative of the Energy Effic ient Mobility Systems (EEMS) Program managed by David Anderson. The authors acknowledge David Smith of Oak Ridge National Laboratory forleading the CAVs Pillar of the SMARTMobility Laboratory Consortium.
- The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Govemment
- This presentation was created by DOE laboratories: Argonne National Laboratory, (Argonne) managed by UChicago Argonne, ШС, under contract no. DE-AC02-06CH11357.The U.S. Govemment reta ins for itself, a nd others acting on its behalf, a paid-up, nonexclusive, irevoc able worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Govemment

[^0]: Standard errors are reported in the parenthesis

