Projects 6 & 7: Generating Weighted Average Annual Education Expenditure and Standard Error

Project 6

So far – we've only looked at sample estimates. Instead, we want to look at *population* estimates. We'll calculate the education means based on the composition of the household

In this project you will:

- Learn about weighting in the CE
- ► Calculate collection year population estimates

Weight – FINLWT21

The sum of FINLWT21 each quarter equals the U.S. Population (in CUs).

■ The sum of FINLWT21 for four quarters equals 4 times the U.S. Population.

■ FINLWT21 is the starting point for calculating expenditure weights and population weights

Expenditure Weights

Basic definition: The expenditure weight is the number of similar CUs that a CU represents in any given quarter. It is the weight used when aggregating to expenditure totals.

FIRST LOOK: QUARTERLY WEIGHTS AND ESTIMATES

Population

Quarter 1 Population: 24 CUs

Sample

Quarter 1 Sample: 3 CUs

CU	Quarterly Expenditure	Weight	Weighted Quarterly Expenditures
Joness	\$3,500	8	\$28,000
Browns	\$2,000	7	\$14,000
Jenkins	\$8,000	9	\$72,000
POPULATION		24	\$114,000

CU	Quarterly Expenditure	Weight	Weighted Quarterly Expenditures
Joness	\$3,500	8	\$28,000
Browns	\$2,000	7	\$14,000
Jenkins	\$8,000	9	\$72,000
POPULATION		24	\$114,000

POPULATION

24

\$114,000

Weighted quarterly average: \$114,000 / 24 = \$4,750

SECOND LOOK: ANNUAL WEIGHTS AND ESTIMATES

Population

Annual Population: 27 CUs

Sample

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual aggregate: 114,000+110,400+116,200+125,000 =\$465,600

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual mean: Annual Aggregate / population = \$465,600 / ???

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000
		\$465,400

Annual mean:

Annual Aggregate / average population = \$465,400 ÷ ((24+26+28+30)/4) = \$465,400 ÷ 27

= \$17,237

Calculating a Standard Error

- To compute actual standard errors, use all 44 replicate weights (WTREP01-WTREP44) and FINLWT21.
- Use the same process just described for creating a mean, but do it 44 times, once for each replicate weight.
- Create a new variable that sums the squared difference between each of the replicate means (WTREP01-WTREP44) and the actual mean
- Calculate standard error

Project 6 Steps

- 1. Multiply quarterly education expenditures by FINLWT21 to obtain weighted aggregates (*NOT the annualized education expenditures!*)
- 2. Create population weights by dividing FINLWT21 by the number of quarters in our sample (4)
- 3. Aggregates: Sum the weighted expenditure estimates by each group
- 4. Populations: Sum the population weights by each group
- 5. Means: Calculate annual means for each of the group by dividing the aggregates by the populations

Project 6 Results Collection year weighted mean

Number of Children	Sample	Education Expenditure Mean	Population
0 children	13,081	\$681.74	83,238,035
1 child	3,210	\$1,624.02	21,605,443
2 children	2,527	\$2,058.27	17,626,936
3 children	1,028	\$1,594.96	7,305,606
4 or more children	486	\$1,614.42	3,519,580

Project 7

Calculate the <u>calendar year</u> education mean by the number of children in the household for the US population in 2021

In this project you will:

- Learn about calendar year versus collection year in CE
- ► Calculate calendar year population estimates using expenditure data from MTBI

Calendar Year Estimates

Two Main Differences:

- Use 5 quarters of data, but only select months that fall in the calendar year (Numerator)
- Population weights are adjusted based on the number of months in the calendar year the CU could report (Denominator)

Population Weights

- Need another adjustment to FINLWT21
 - ► Adjust weights based on the number of months that could have been included
 - ► MO_SCOPE: "Months in Scope"

MO_SCOPE

Quarter 1 (FMLI191x)						
Oct Nov Dec Jan Feb March 2020 2020 2021 2021 2021						
			0			
			X	1		
			X	X	2	

Quarter 5 (FMLI201)						
Oct Nov Dec Jan Feb March 2021 2021 2021 2022 2022 2022						
Χ	Χ	Χ	3			
	Χ	Χ		2		
		Х			1	

MO_SCOPE

Quarter 2 (FMLI192)							
Jan 2021							
X	X	X	3				
	X	X	X	3			
		X	X	X	3		

Population Weights

- Multiply FINLWT21 by MO_SCOPE / 3
- Still need to adjust to account for quarterly weights, so divide by 4.
- ...wait did you say 4?? But I'm using 5 quarters?!

Yes...but you're really only using 1/3 of the first quarter and 2/3 of the fifth quarter. So, dividing by 4 is easier then saying divide by:

$$(1/3)*1 + 1 + 1 + 1 + (2/3)*1 = 4$$

Quick Guide to Adjusting Population Weights

FMLI191x	POPWEIGHT = FINLWT21 [(QINTRVMO-1)/3]/4
FMLI192	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI193	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI194	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI201	POPWEIGHT = FINLWT21 [(4-QINTRVMO)/3]/4

Expenditures in Scope

- REF_YR
 - ▶ Identifies the reference year of the expenditure
- REF_MO
 - ▶ Identifies the reference year of the expenditure

Project 7 Steps

- 1. Append all five quarters of MTBI data.
- 2. Create calendar year education expenditures:
 - For each NEWID, create an EDUCA variable by summing the following UCC's, if REF_YR = 2021:
 - Tuition: 670110, 670210, 670410, 670901
 - Test: 670903
 - Books: 660110, 660210, 660410, 660901, 660902
 - Other: 67092
- 3. Append all five quarters of FMLI data
- 4. Merge FMLI and MTBI
- 5. Create weighted expenditures by multiplying EDUCA by FINLWT21
- 6. Create population weights using months in scope (MO_SCOPE)
- 7. Aggregates: Sum the weighted expenditure by number of children
- 8. Populations: Sum the population weights by number of children
- 9. Means: Calculate annual means for each of the group by dividing the aggregates by the population weights by number of children

Project 7 Results Calendar year weighted mean

Number of Children	Sample	Education Expenditure Mean	Population
0 children	16,469	\$ 681.21	83,263,862
1 child	4,035	\$1,492.60	21,710,654
2 children	3,123	\$1,902.56	17,544,588
3 children	1,295	\$1,435.77	7,576,975
4 or more children	596	\$1,802.82	3,484,422

