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Abstract
Survey data are often randomly drawn from an underlying population of inferential interest 
under a multistage, complex sampling design. A sampling weight proportional to the number of 
individuals in the population that each sampled individual represents is released. The sampling 
design is informative with respect to a response variable of interest if the variable correlates with 
the sampling weights. The distribution for the variables of interest differs in the sample and in the 
population, requiring correction to the sample distribution to approximate the population. We 
focus on model-based Bayesian inference for repeated (continuous) measures associated with 
each sampled individual. We devise a model for the joint estimation of response variable(s) of 
interest and sampling weights to account for the informative sampling design in a formulation that 
captures the association of the measures taken on the same individual incorporating individual-
specific random-effects. We show that our approach yields correct population inference on the 
observed sample of units and compare its performance with competing method via simulation. 
Methods are compared using bias, mean square error, coverage, and length of credible intervals. 
We demonstrate our approach using a National Health and Nutrition Examination Survey dietary 
dataset modeling daily protein consumption.
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1. Introduction

Survey designs for sampling an underlying population of inference often consist of one 
or more stages to sample clusters of units, followed by the sampling of units. Unequal 
probabilities of selection are constructed to over-sample some individuals, often to 
reduce the variance for a domain estimator of interest. A sampled individual who 
responds to the survey is referred to as a survey participant, or, for simplicity in the 
sequel, a participant. Inference about the study population needs to consider the sam-
pling design, in particular by incorporating sampling weights into the statistical analysis. 
Each individual, i , in the population corresponds to a sampling weight, wi , that is 
designed to be inversely proportional to the joint inclusion and response probability, πi, 
of the individual i  as a participant; that is, the individual is selected and responded to the 
survey. We express this probability mathematically with,

Pr individual in the population becomes a participant[ ] 1/i wi i� ��  (1)

The weights are, therefore, adjusted for unequal selection probabilities of selection 
into the survey and for nonresponse, for example, when a selected individual declines to 
participate. The weights may also be adjusted for other situations; for example, in The 
National Health and Nutrition Examination Survey (NHANES) dietary datasets released 
for cycle 2003 to 2004 and later cycles, the dietary sampling weights are adjusted for the 
day the survey was taken (weekday vs. weekend). We take the perspective of secondary 
analysts, who are given the weights which are likely to include a nonresponse adjustment 
by the data producer. In secondary analysis no distinction between sampling and survey 
response weights is possible and one has to work with the associated unit-level weights. 
We note that we construct πi for our modeling in the sequel to be proportional and not 
necessarily equal to the marginal probability of becoming a participant and, thus, πi can 
take any positive value.

Let yi  be the response variable of interest of the individual i  in the population. A 
sampling design is informative with respect to the response variable when the event of 
becoming a participant and the outcome is related even after conditioning on relevant 
characteristics of the individual, vi, which is expressed mathematically by, yi i i� � | v .  
León-Novelo and Savitsky (2019), hereafter referred to LS2019, propose a model-
based Bayesian approach that specifies a joint likelihood for the sampling weights 
and the response variable of interest to correct for informative sampling. Their 
approach models the participant probabilities, πi and the response, yi , jointly via 
p y p y p yi i i i i( , , ) = ( ) ( , )� | | |�� �� �� ��� , where p yi( )|θθ  is the distribution of the 
response in the study population and θθ  is the vector of population parameters of 
interest, while κκ  the vector of nuisance parameters used to model the relationship 
between yi  and πi and serves as an indicator of informativeness for the sampling design 
(to the extend that the credible interval [CI] for κ y , an entry of κκ  defined below, is 
bounded away from 0). The target user for their model formulation to estimate θθ  in an 
unbiased fashion with respect to the population distribution is the data analyst who 
seeks to estimate the underlying generating parameters θθ  from data acquired from a 
survey sample. It is typical to provide the analyst values of the response variable and 
predictors for the survey participants along with the associated sampling weights. The 
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approach assumes that the analyst knows the sampling weights and the predictor val-
ues for the participants only. The analysts knows neither the sampling weights nor 
predictor values for non-participants.

In LS2019 the main focus is linear regression with fixed effects. In this article, we 
extend their approach incorporating random effects in the linear regression model to 
accommodate repeated measures. Repeated measures arise when a response is measured 
multiple times for the same participant; for example, the NHANES dietary dataset con-
sists of answers for the same dietary questionnaire at two different days for each partici-
pant. Our extension performed in this article incorporates the modeling for the association 
among the the measures within each participant. This is achieved by constructing partic-
ipant-specific random effects (P-REs), δ , specified in the marginal linear regression 
model for the response variable (vs. the conditional model for the sampling weights 
given the response variable). We consider the case of continuous repeated responses.

The use of random effects to model the correlation among observations is common 
practice; for example, the NCI method (Tooze et al. 2002, 2006, 2010), which is the 
approach recommended to estimate typical (daily) nutrient intake when analyzing 
NHANES dietary data incorporates random effects. In particular, the NCI method is a 
generalized linear mixed effect model set-up where the correlation of the two repeated 
measures (i.e., participant nutrient intake in two different days) is modeled by a P-RE. 
They do not, however, include the sampling weights in their the statistical model. Instead, 
sampling weights are used to correct for the sampling design when fitting the model via 
a pseudolikelihood. The contribution of each observation to the log of this pseudolikeli-
hood is proportional to the sampling weight, log log |pseudolikelihood= �i i iw p y ��� �. 
Estimation consists of two steps: In the first step, the point estimates maximize the pseu-
dolikelihood. These estimates are asymptotically unbiased. In the second step, confi-
dence intervals for (and/or standard error of) the parameters are calculated via Taylor 
linearization or re-sampling methods (Centers for Disease Control [CDC] 2016b).

By contrast, our approach incorporates the sampling weights into the likelihood and 
no second step is required to compute credible intervals for the model parameters in 
order to achieve correct uncertainty quantification. Ours is the first formulation that 
incorporates P-REs into the model framework of LS2019.

The NCI method, by contrast, treats the weights as fixed in a “plug-in” formulation, 
which allows for noise unrelated to the response variable of interest for estimation. The 
plug-in approach is not fully Bayesian as is our joint modeling formulation such that the 
uncertainty relative to the distribution over all possible samples is not accounted for. 
LS2019 show that the pseudo or plug-in likelihood formulation produces overly optimis-
tic or short credible intervals.

A class of pseudolikelihood approaches estimate the parameters of generalized lin-
ear mixed models under informative sampling by maximizing the log pseudolikeli-
hood after integrating out the random effects. This approach parameterizes the so-called 
profile pseudolikelihood. Rabe-Hesketh and Skrondal (2006) propose adaptive quad-
rature to integrate out the random effects and focus on multistage sampling where 
random effects are used to model the dependence of units within the same cluster. They 
mainly focus on logistic regression. Later, Kim et al. (2017) propose an estimation 
method under informative two-stage cluster sampling. The approach in Kim et al. 
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(2017) is based on approximating the profile pseudolikelihood using a normal approxi-
mation of the sampling distribution of the random effect estimates, avoiding integra-
tion of the random effects. Their focus is on linear and logistic regression, while here, 
ours is on linear regression only.

Their approaches further incorporate repeated measures for the same individual as we 
propose to do. Their methods use plug-in pseudolikelihood while ours, by contrast, is 
fully Bayesian using a likelihood defined for the observed sample, rather than approxi-
mate pseudolikelihood. Our approach focuses on the estimation of model parameters, θθ , 
of the data generating model and not population totals (e.g., the population average of the 
response variable). A series of papers Zheng and Little (2003), Little and Zheng (2007), 
and Zangeneh and Little (2015) propose Bayesian methods to estimate population totals 
when the inclusion probabilities are proportional to a size variable. All of these approaches 
estimate the response value of non-sampled units to estimate the population total. By 
contrast, our approach utilizes only quantities available for sampled units.

In Section 2, we review the basic approach of LS2019. In Section 3 we introduce our 
extension that incorporates participant-specific random effects. In Section 4, we sum-
marize the pseudolikelihood method and compare its performance with our fully 
Bayesian formulation in Section 5, in terms of bias, mean square error (MSE), and, cov-
erage, as well as the length of credible intervals. In Section 6, we demonstrate our method 
with an NHANES dataset, estimating the daily protein consumption in the American 
population. We conclude with a discussion in Section 7. An Appendix presents details 
referred to, but not addressed in the main manuscript. We rely on Stan (Carpenter et al. 
2016), which performs their No U-turns implementation of the Hamiltonian Monte Carlo 
posterior sampling algorithm, for estimation of Bayesian hierarchical model posterior 
distributions estimated in this article.

Going forward, the notation normal( , )2� �  is used to denote the normal distribution 
with mean m and variance σ 2  while normal( , )2x | � �  denotes its probability density func-
tion (PDF) evaluated at x; lognormal( , )2� �  denotes the lognormal distribution, so that 
X lognormal( , )2� �  is equivalent to log normalX  � �, 2� �  and lognormal( , )2x | � �  
the respective PDF evaluated at x ; MVN p ( , )m S  denotes the p-variate normal distribution 
with mean vector m  and variance-covariance matrix S ; and gamma a,b( )  denotes the 
gamma distribution with shape a  and rate b . Matrix, Iq, denotes the q q×  identity 
matrix and 1q  the q  dimensional column vector with all its entries equal to 1. All the 
non-transposed vectors are column vectors.

2. Review of LS2019 for Single Stage Designs

We next summarize the general formulation of LS2019 that focuses on a single stage of 
sampling with the model ( , )�� ��  parameterized only using fixed effects. We extend and 
generalize this formation in the next section. Let yi  be the response of the individual i  
in the population and πi the corresponding inclusion probability, that is, the probability 
of s/he becoming a survey participant under the study sampling design (πi is inversely 
proportional to the sampling weight wi ). A sampling design is informative for inference 
on a participant response variable of interest when their inclusion probabilities are cor-
related with the response variable, yi i� �  for some i .
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LS2019 introduce a Bayesian hierarchical construction that jointly models  
both the response, yi , and the marginal inclusion probability, πi, that is, 
p y p y p yi i i i i( , , ) = ( ) ( , )� �| | |�� �� �� ��� , where p yi( )|θθ  is the response or generating 
distribution for the population, θθ  is the population parameter of interest, and κκ  is the 
nuisance parameter used to model the relationship between yi  and πi that provides infor-
mation on the degree of informativeness of the sample (based on how far the posterior 
credible intervals are bounded away from 0). LS2019 apply Bayes theorem (see deriva-
tion in Appendix A.1 or also Equation (7.1) in Pfeffermann et al. (1998)) to compute

p y p
y i

s i i
i i( , ) :=
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=�
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The superindex   denotes the quantity being integrated out. Note that the denominator 
in Equation (2) is the marginal probability of individual i  becoming a participant. The 
likelihood for the observed sample,

like p y
i

n

s i i( , ) = ( , , ).
=1

�� �� �� ��� � |  (3)

We note that for Equation (3) to be a valid likelihood we require

p y y nn n( , ), ( , ) 1 , ,1 1� � |individuals to become participants �� ���� ���
�� ��= ( , ) , ,

=1
�
i

n

i ip y i� |individual becomes a participant �� ��  (4)

Appendix A.2 contains the proof that the following population and design conditions are 
sufficient for Equation (4):

(C1) ( , ) ( , )y pi i� 

ind

� |�� �� , with index i  running over population individuals, are inde-
pendent. We construct the πis as unnormalized since a normalization would induce 
dependence (e.g., if we normalize such that the πs sum to 1, Pr(π2 > 0.5 | π1 > 0.6) 
= 0 and thus � �1 2� ).

(C2) For any individual, conditioned on his/her response and inclusion probability, θθ  
and κκ , the event of becoming a participant (being sampled and responding) is 
independent of any other individuals becoming participants, their responses and 
inclusion probabilities.

(C3) Conditioned on θθ  and κκ , the response and inclusion probability of a population 
individual is independent of the responses and inclusion probabilities of the 
participants.

(C3) is natural in our framework, the responses and inclusion probabilities in the popu-
lation are not affected by the ones in the sample (i.e., the participants). A referee noticed 
that in practice condition (C1) can be violated if the sampling weights, wi i�1/� ,  
include nonresponse or post-stratification to known population totals adjustment  
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(since the adjustment depends on the common data). For example, if Hispanics tend to 
have lower response rates, nonresponse adjustment will make their weights higher (and 
thus dependent), or if the proportion of Whites in the sample is higher than in the popula-
tion post-stratification adjustment will make their weights lower. If this is the case the 
analyst is not receiving the πis as defined in Equation (1) but instead estimates of the πis 
that may be dependent. Yet, as secondary analysts we treat these estimates as if they were 
indeed the independent πis (despite adjustments for nonresponse and calibration). To cope 
with this case of dependent (estimated) inclusion probabilities, one can control for the 
variables used for adjustment (in our example race/ethnicity) when defining the distribu-
tion of � i iy| ,��  such that responses are independent conditioned on κκ  (as we will dis-
cuss below after Theorem 1). (C2) is satisfied when sampling is with replacement and non 
adaptive (i.e., the probability of inclusion does not change by the observed values) but not 
satisfied when sampling is without replacement from a finite population. Nevertheless, if 
the population size is much larger than the sample size we can, as it is common practice, 
approximate the likelihood under sampling without replacement by the likelihood with 
replacement. When (C1), (C2), and (C3) hold in Equation (3) is a likelihood and the pos-
terior distribution of the model parameters is

p like Prior Priors �� �� �� �� �� ��, ,| data� � � � � � � � � � �
where data = ( , ) : = 1, ,y i ni i� � �  denotes the sample of size n . Note that without loss 
of generality, the population individual index i  runs from 1 to n in the sample. The for-
mula above allows fully Bayesian inference of the model parameters. The price the mod-
eler pays for this fully Bayesian approach is the requirement to specify a conditional 
distribution of the inclusion probabilities for all units in the population, p yi i( , )� | �� , and 
ps  involves complex calculations, namely, the expected value in the denominator of 
Equation (2). To overcome this, we use STAN and R to estimate the joint posterior dis-
tribution for the model parameters. STAN uses Hamiltonian Monte Carlo approach to 
draw samples from the posterior.

LS2019 jointly model the response and the inclusion probabilities, (yi , πi), using only 
quantities observed in the sample; in particular, the joint distribution of (yi , πi) are differ-
ent in the observed sample and in the population, and we have corrected for this differ-
ence in a way that allows us to make unbiased estimation of the parameters of the 
population model.

Next we review the conditions in LS2019 that produce a mathematically tractable ps  
that defines a class of distributions for p yi( )|θθ  and p yi i( , )� | ��  returning a closed 
form expression for the expectation in the denominator of (2), which simplifies posterior 
computation. We allow for p yi( )|θθ  and p yi i( , )� | ��  to depend, respectively, in the set 
of covariates ui  and vi. Since we treat the covariates as fixed (as opposed to random) 
and to ease notation, we do not explicitly write p yi i( , )|θθ u  or p yi i i( , , )� | �� v  but 
instead p yi( )|θθ  or p yi i( , )� | �� . We also allow that some entries of ui overlap vi , for 
example both yi  and πi may depend on gender, or even u vi i= . We now present Theorem 
1 in LS2019, that we will adapt to our repeated measurements setting in Theorem 2

Theorem 1. If the population distribution of � i iy| ,��  is
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� � ��i i i i iy h y| |, , , , ,2�� ���lognormal v� �� �
with the function h yi i( , , )v κκ  of the form h y g y ti i i i i( , , ) = ( , , ) ( , )v v v�� �� ���  where 
� �� �

2 2= ( , )�� vi , possibly a function of ( , )κκ vi  then

p y
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Theorem 1 guarantees a closed form expression for ps  in Equation (2) when p yi( )|θθ  

and M y ( ; )κκ   have closed forms. For the particular case of g y yi i y i( , , ) =v κκ κ  with 
� y ��  an entry in κ , M y  is the moment generating function (MGF) of the population 
distribution of yi |θθ , evaluated at κκ y. Similarly, if we wanted to include an interaction of 
the response and other covariate, say vi, in the model for � i iy| ,��, we may define 
g y y v yi i y i y i i( , , ) =v �� � ��

 

 with � �y y,


�� entries of κκ , then M y  is the MGF at evalu-
ated at � �y y iv�

 

. As discussed in LS2019, the assumption of a lognormal distribution for 
πi is mathematically attractive since πi , for individual i , is usually calculated as the product 
of inclusion probabilities across the stages of the multistage survey design. If each of these 
stage-wise probabilities are lognormal then their product, �� i, is lognormal as well.

As long as t i( , ) = 0v �� � � contains an intercept term, κ0, we may assume that πi is 
proportional, as opposed to exactly equal, to the inclusion probability for unit i . In other 
words, no restriction is imposed on �i i�  where the index i  could run over the popula-
tion or sample indices. This is true since � �i � lognormal( , )0 �   implies that 
c ci� � �� � lognormal( , )0 log    where c > 0  is any constant and we do not make 
any inference on the intercept, κ0. We recommend to include the variables used for non-
response or post-stratification to population totals adjustments in the vector of covariates 
vi  so condition (C1), introduced after Equation (4), holds for the available (estimated) 
πis in the sample, that is, ( , ), , ( , ) ,1 1y yn n� � |�� ��  are independent. (yi, πi)s are inde-
pendent if y yn1, , |θθ  are independent and if � �1 1, , , , , , n ny y| �� �� , are independ-
ent. The latter independence assumption follows if the relationship between the  
expected value of log πi and the adjustment variables is well captured by h yi i( , , )v κκ .  
If adjustments are done, as usually, by multiplying the selection weights, 
w isel i, 1 /� Pr population individual being invited to participate inn the survey� �, by non-
response and/or post-stratification weights, the linear relationship between log (πi) and 
the adjustment variables is appropriate. For example, if nonresponse weights  
for Hispanics is estimated as the inverse of the response rate for Hispanics RRH   
among the individuals invited to participate in the survey, w w RRi sel i H= 1/, × , 
log log log log� i i sel i Hw w RR= = ( ) ( ),� � �  and � �i i i iy y� � �| , ,�� ��  for � �i i  condition-
ing on race/ethnicity (included in vi).

In the sequel, we adapt and extend LS2019 to our particular repeated measurements 
setup set of conditions in LS2019 on p yi i( , )� | ��  under a likelihood that guarantees the 
availability of a closed form expression for ps. This approach assumes that the inclusion 
probabilities are random, as opposed to the frequentist pseudolikelihood approach dis-
cussed later in Section 4 that assumes them fixed.
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3. Approach

3.1. Repeated Measures Under Informative Sampling

We consider the mixed effects linear regression population model (for repeated measures),

 yim im
t

i im im y i= 0, 0,2u �� � � � �� � � � with and
iid iid

� �normal normal ��
2 ,� �  (5)

for each individual i  in the population, and m Mi= 1, , , the total number of repeated 
measures for individual, i . Here, the double index im  indexes the population individual 
i  at measurement occasion m ; yim  is associated value for the response variable; uim  is 
a qy  dimension vector of covariates whose first entry is set equal to 1 so the model 
includes an intercept coefficient; and, δi  is a participant-specific random effect (P-RE).

Denote with yi i i i M
i

ty y y= ( , , , )1 2 ,  the vector of all measurements for individual i  

and Ui i

q
yu= 1

1( ;...; )×
uiMi  the q My i×  matrix whose column m  corresponds to covari-

ates at occasion m  for individual i. In applications, usually multiple entries of uim  and 

uim′  naturally match or are exactly equal; for example, when the entry 


 of uim, uim,, 
encodes the participant’s gender or baseline weight, u uim im, ,=

 
′ . The population model 

in Equation (5) is equivalent to

y Ui M
i

i
t

M
i

i�MVN �� , ,��� � for individual in the population  (6)

with ��M
i

y M
i

M
i

M
i

t= 2 2� ��I � 1 1 . We parameterize an equal correlation structure but other 

structures, for example, first order autoregressive, may also be used.
Following LS2019, our Bayesian approach accounts for the informative sampling 

design by modeling the joint distribution of (yi, πi), p p pi i i i i( , , ) = ( ) ( , )y y y� �| | |�� �� �� �� ,  
where p i( )y |θθ  is the PDF of the distribution in Equation (6) with �� ��:= ( , , )� �� y ; and 
p i i( , )� | y ��  is discussed below.

Similar to the set of covariates for yi , we denote with qπ the number of covariates 
used to model � i i| y ,��; and, vim the qπ dimensional vector of these covariate values for 
individual i  at occasion m . The first entry of vim is set equal to 1 to include an intercept 
and it is common that v vim im, ,=

 
′ , where vim, is the entry 



 of vim. We denote with 

Vi
q= 1

1(v ;...; v )i ,�
�

i Mi
 the q Mi� �  matrix of covariates. Note that we allow for vim  and 

uim  to have common covariates or even being equal. For example gender can be used to 
model both with yi |θθ  and � i i| y ,�� . Also note that the distributions of yi |θθ  and 
� i i| y ,��  depend, implicitly, on the quantities ui  and vi , respectively, but, since they are 
fixed quantities and to ease notation, we will omit them from the notation of the condi-
tional distributions.

Theorem 2 below presents an extension of Theorem 1 adapted to the repeated meas-
ures formulation of Equation (6). The vectors yi  and θθ  in Theorem 2 play the role, 
respectively, of the univariate response yi  and θθ  in Theorem 1. Note that in Theorem 2, 
we work with the model in Equation (6), where the participant-specific random effects, 
δi , is marginalized to later bring it back in Equation (11).
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Theorem 2. If the population distribution of � i i| y ,��  is

� ��i i i ih| y y V, , , , 2�� ��� lognormal � �� �  (7)

with the function h i i( , , )y V κκ  of the form h g ti i i i i( , , ) = ( , , ) ( , )y V y V V�� �� ���  where 
� �� �

2 2= ( , )Vi k , possibly a function of ( , )Vi κκ  then the exact likelihood for the observed 
sample takes the form,

 
( , ) , , ( , , )

=

y yi i s i ip� �| |� � � � �individual i is a participant

normal llog |
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|

exp� ��
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�
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Recall that use the superindex   to denote the quantity being integrated out. We next 
discuss a common model setting that yields a closed form for Equation (8). If we choose 

g yi i y i( , , ) :=y V �� � �  with y M yi i m

M
i

im� = (1/ ) =1�  the average of the repeated measures of 

individual i ; and, κ y  depending on κκ  and, perhaps, on Vi , then,
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is the MGF of yi⋅
  evaluated at κ y . Under the population model in Equation (6), 
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with �� ��= , ,� ��y v� �  and �� ��= , ,� ��y� � . Recall that both ββ  and κκ v  include and 
intercept coefficient. Notice that we could have also used g yi i m ym imy V, , :=��� � � �  or 
t i m im

t
m( , ) =V v v�� ���  to give different weights to each repeated measure (response and 

covariates, respectively) in the distribution of log |� i iy ,�� . Similar arguments as the 
one to derive Equation (10) would give us a close form for ps  in Equation (8).

For ease-of-conducting our simulation study we opt to retain and not marginalize over 
the participant-specific random effect, treating it as latent variable as an entirely equiva-
lent specification as Equation (10) to obtain,
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p ys i i i
m

M
i

im im
t

i y i( , , , ) = { } ( , )
=1

2y u� � � � �| | |�� �� �� �� � normal � with ��
iid

normal(0, )2��  (11)

with { }  the quantity within curly brackets in Equation (10). The likelihood under 
yi i|�� ,�  given in Equation (5) is

Like p
n n n i

n

s i i i�� �� �� ��, ( , , ), ; ( , ), , ( , ) ( , , ,
1 1 1 =1
� � � � � �
 y y y� � � � | ))  (12)

The sample size is n  and without loss of generality i n= 1, ,  now indexes the partici-
pants (in the observed sample), as opposed to the individual in the population. The 
expression in Equation (11) represents an augmented likelihood for ( , )yim iδ  and con-
structs an augmented posterior distribution when combined with prior distributions for 
the model global parameters (e.g., ( , , , )�� �� � �� y ). The parameter inducing the depend-
ence between yi  and πi is κ y ; and, yi i y� � �| = 0 . A 95% credible interval of κ y  non 
containing zero indicates that the sampling design is informative for the response y . For 
details on how to define Equation (11) and (12) in Stan code see appendix subsection 
A.4. In our set-up, since δi  is latent, we estimate it using the prior distribution 

� � ��1
2, , (0, ) n |�� �

iid

normal  starting with Equation (12). We then proceed to select pri-
ors for θθ  and κκ  to complete the specification of the Bayesian model. We choose the 
following priors:
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where the priors on the global parameters are chosen to be vague or weakly informative. 
Here normal �( , )2� �  denotes the normal( , )2� �  distribution restricted to the positive 
real line. When implementing, we standardize the inclusion probabilities so that 
� �i

n
i i iM=11/ =� , the total number of measurements, matching the standardization of the 

pseudolikelihood approach below (Section 4). This way the πis are neither too small nor 
too large so that the prior distribution for ��  in Equation (13) is vague. The hyperparam-
eters cy

2  and cδ
2  are chosen large enough so the priors are vague. For example, cy

2  is 
chosen to be larger than the average over m  of the sample variances of { = 1, , }y i nim |   
and cδ

2  is chosen to be larger than the sample covariance of {( , ), = 1, , }1 2y y i ni i  . In the 
next subsection we extend the proposed method to incorporate primary sampling unit 
information into the statistical analysis based on León-Novelo and Savitsky (2023). If 
not of interest this subsection may be skipped.
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3.2. Including PSU Information into the Analysis

NHANES data are collected through a complex sampling design. First the U.S. is divided 
into fifteen strata and two primary sampling units (PSUs) are sampled within each stra-
tum. Strata are defined by the intersection of geography with concentrations of minority 
populations and a PSU is constructed as a county or a group of geographically contigu-
ous counties. The NHANES data are packaged with variables of interest for each survey 
participant along with the stratum and PSU identifiers to which s/he belongs to as well 
as sampling weights. NHANES releases masked stratum and PSU information to protect 
participant’s privacy. Every two-year NHANES-data cycle (CDC 2011) releases infor-
mation obtained from H = 15  strata with nh = 2  PSU per stratum.

León-Novelo and Savitsky (2023) incorporate PSU information into the analysis to 
account for both possible correlations among the responses of individuals in the same 
PSU and for informative sampling with respect to PSU (i.e., when the probability of 
sampling the PSU is not independent of the values of the response variable for nested 
units). Their approach consists of including a PSU-specific RE (PSU-RE) in both the 
model for the response and the inclusion probability. They show that the inclusion of 
these random effects produce correct uncertainty quantification, that is, 1��  credible 
intervals with 1��  coverage. León-Novelo and Savitsky (2023) do not consider 
repeated measures. We now further extend the PSU-REs formulation in León-Novelo 
and Savitsky (2023) to the repeated measures model in Subsection 3.1. This extension 
includes a participant-specific RE in the model for the response, and PSU-REs in the 
models for the response and the inclusion probability.

Let J  denote the number of PSUs in the sample where j J= 1, ,  denotes the PSU 
index and nj  denotes the number of observations nested in PSU j . We retain the nota-
tion from previous sections replacing the subindex, i  with ij , where now the index i  
runs from 1, , nj ; Mij  now denotes the number of occasions the response was meas-
ured for individual i  in PSU j ; yij , πij, and U u uij ij ijM

ij
= ( ; ; )1   denote, respectively, 

the Mij  dimensional vector of repeated response measures, the inclusion probability of 
individual ij  as a participant, and the q My ij×  matrix with mth  column, uij , the vector 
of covariates at occasion m , for the participant i  in the PSU j . The first entry of uijm , 
m Mij= 1, ,  is set to 1 so the model includes an intercept. Adding the PSU-RE, η j , to 
the model in Equation (6) yields,
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Adding the PSU-RE, ��
j , in the model for πi defined in Equation (9) yields,
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�ij ij j y ij ij
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��1
2, , 0, J �

iid
normal � � ; y M yij ij m

M
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ijm� = (1/ ) =1�  and 

v vij ij ijmM� = (1/ )�  and vijm  the vector of covariate at measurement occasion m  used to 
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model � ��
ij ij j| y , ,�� . So, reintroducing the P-RE, δij , the analogous to Equation (11) is 

(this is, just replacing v vv vi
t
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j�� ��� ��  in Equation (11)).
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iid
. Since the qualities of 

this approach have been reported in León-Novelo and Savitsky (2023), we will not con-
sider it in our simulation section. This model will be fit in the application section with the 

priors defined in Equation (13) and � �
�� �, (0,1)�

iid
normal � .

4. Pseudolikelihood

Savitsky and Williams (2019) (see their Theorem 2) propose an approach to incorporate 
sampling weights and random effects using a plug-in augmented pseudolikelihood that 
for the repeated measures set-up of Subsection 3.1 is:
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im
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=1 =1

2( )| |���
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�
��
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with the sampling weights standardized so Σ Σi
n

i i i
n

iM w M=1 =1= . In Subsection A.3 we 

present the original formula in Theorem 2 of Savitsky and Williams (2019) and derive (16) 
as a specific case of this formula. The contribution of the observation for a unit, yim ,  
to the pseudolikelihood is its PDF (or what it would contribute to the likelihood) expo-
nentiated to its sampling weight, wi . The prior distribution for the random effects is also 
exponentiated by sampling weights, wi . The sampling weights, wi  are standardized  
so they sum the number of participant/occasion observations. For example if we have 
100 participants with two observations the standardized sampling weights must sum 
100 2 = 200× , that is, Σi

n
iw=1 = 200 .

The observed data pseudolikelihood for yim  together with the pseudo prior for the 
random effects, δi , formulate an augmented data likelihood. The participant-specific 
random effects are used to account for dependence among the repeated measures. Since 
[ ( , )] ( , / )2 2normal normalx x ww| |� � � ��  the pseudolikelihood approach in linear 
regression is equivalent to the regression model:

y wim im
t

i im im y i= 0, /2u �� � � � �� � with � normal

with � ��i iw�normal 0, /2� � , for m Mi= 1, ,  and i n= 1, , .

The advantages of the pseudolikelihood approach over the proposed fully Bayesian 
approach are: (A) It incorporates weights into the power term of the likelihood function 
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so that relatively little modifications are performed to the population model sampler to 
incorporate the pseudo likelihood; (B) Specification of πi | yi ,  for the population is not 
necessary; (C) There is no expected value

Pr individual becomes a participanti E E y
y
i

i i| , = ( | , )
|

�� �� ��
��

� � �
 ��� ��

(the denominator in Equation 2 to compute as in the fully Bayes method. Note than in 
(C), the inner and outer expectations may depend in a set of covariates vi  and ui , 
respectively.

The disadvantages of the pseudo posterior approach are: (A) It is not fully Bayesian; 
(B) The sampling weights are only needed for unbiased estimation to the extent that they 
are dependent on the response variable of interest. Any variation in the weights not 
related to the response variable represents noise. The pseudo posterior distribution does 
not discard variation in weights that is independent of the response variable, so informa-
tion unrelated to the response introduces noise into the estimation of the pseudo posterior 
distribution; (C) The weights must be normalized to regulate the amount of estimated 
posterior uncertainty, which is not required for the fully Bayes approach (except to spec-
ify a vague prior for πi as discussed after equation 13); and, (D) The sampling weights are 
inversely proportional to the inclusion probabilities. The inclusion probabilities repre-
sent a distribution that governs the taking of samples from the population that we call the 
“sampling design” distribution. The resulting credible intervals of the pseudolikelihood 
do not account for uncertainty with respect to the sampling design distribution because 
they treat the inclusion probabilities as fixed.

The pseudolikelihood is used here because it is convenient in that the Bayesian data 
analyst may use the same model and posterior sampling algorithm as defined for the 
population and only exponentiates the likelihood contributions by the associated sam-
pling weights. While the pseudoposterior is not our recommended (fully Bayesian) 
method because it is known that it produces incorrect credible intervals, we include it as 
a comparison to our fully Bayes procedure because it is the commonly used method in 
practice due to its ease of implementation.

We implement the pseudolikelihood approach in the sequel as a Bayesian version of 
the NCI method. The pseudolikelihood approach uses one-step estimation, instead of the 
two-step estimation algorithm of the NCI approach, which propagates uncertainty in 
estimation of parameters, but is otherwise equivalent. We show that the fully Bayes 
approach outperforms the pseudolikelihood approach in terms of bias, MSE, and 95% of 
CI coverage.

5. Simulation Study

We perform a Monte Carlo simulation study to compare the performance of our fully 
Bayes method in Subsection 3.1 with the pseudolikelihood approach in Section 4. In 
each Monte Carlo iteration, we generate a population of size N pop = 105 . The informa-
tion constructed for each individual in the population is its inclusion probability, two 
repeated measures, and the value of a predictor at each measurement occasion. Next, we 
generate an informative sample and a simple random sample. The former is analyzed 
with our fully Bayes method, the pseudolikelihood approach and the model in Equation 
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(5) that ignores the informativeness of the sample (labeled POP). The simple random 
sample is analyzed with the model (5) (label this analysis SRS). The SRS is included to 
serve as a benchmark for point estimation and uncertainty quantification and is com-
pared to methods estimated on the informative sample taken from the same population. 
For each population and sample we apply the estimation approaches of our fully Bayes 
method and associated comparator methods, assessing the bias, MSE, and coverage 
properties. We focus on inference about β0  as a global parameter of inferential interest. 
We will repeat steps 1 to 3 below M = 1000  (say) times:

1. Generate a population of N pop = 105  individuals. For i N pop= 1, , , generate:

(a) inclusion probabilities � � � �1, , = 4, = = 2 N
pop

a rate b�
iid

gamma� � ;

(b) predictors u ui i1 2, 0,1�
iid

normal � � ;

(c) individual-specific random effects � ��i �
iid

normal 0, = 0.32 2� � ;

(d) response yim im� normal � ,0.52� �  with mean � � �i i i iu1 1= 1 0.5� � �  and 

� � �i i i iu2 21 0.5� � � � . Notice that the covariate values are different, 

u ui i1 2≠ , but the effect on the response is the same. We are adding πi to the 

mean so y u ui i i i� � | ( , )1 2 .
2. Generate a simple random sample (SRS) and an informative sample (IS) (without 

replacement), each of size n = 100 . The IS contains ( , , , ,1 2 1 2y y u ui i i i iπ ) with prob-
ability � �

i i
N

i
pop

/ =1� � � , while the SRS uses equal probabilities of value, 1/ N pop .  
Note that the sum of the πis in the sample (i.e., �i

n
i

s
=1

( )� ) or in the population  
(i.e., �i

N
i

pop

=1
� ) is not standardized. Large values of yi1  and yi2  are more likely to 

be sampled (large value of πi is associated with large value of yim). The simulation 
true parameter value of β0 , the intercept, under our regression model in Equation 
(5) is � �0

,
1 2:= ( = = 0) = 1 ( ) = 1 4 / 2 = 3Ana TRUE

im i i iE y u u E| � � .
3. Analyze IS with three methods, and also the SRS. All of them assume the analy-

sis model in Equation (5) with ββ = ( , )0 1β β t , uim
t

imu= (1, ) , and priors specified 
in Equation (13) with c cy

2 2= = 1δ .
(a) FULL: The proposed Bayesian model in Subsection 3.1; with v uim im=  so 

vi
t

i iu u:= (1, ( ) / 2)1 2+  in Equation (15).
(b) PSEUDO: Pseudolikelihood approach as described in Section 4, with 

wi i�1/� .
(c) POP: Bayesian model in Equation (5), ignoring the πis.

4. Analyze the SRS with model (5), label this SRS analysis.
5. Compute and store for each one of the three models plus the analysis of the SRS:

 • Point estimate of β0  equal to the posterior expected value of β0 .
 • Central 95% CI for β0 .

The above simulation study design will tend to allow non-informative inference (that allows 
unbiased estimation using the uncorrected population model (i.e., POP) for the slope param-
eter of interest, β1 , for a sufficiently large sample size due to the conditioning on πi (in mi) 
used to generate yi . We could have added an interaction term � i iu� 1  in mi1 and � i iu� 2  in 
mi2 to bias the estimation of β1  under the uncorrected model (POP) and require our fully 
Bayes likelihood for the observed sample of Equation (12) (i.e., FULL) for correct 
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inference. For ease-of-understanding, however, we achieve the same benefit by focusing on 
the global intercept, β0 , which is informatively estimated under the sample design.

For each method, we end up with M  point estimates of β0  and central 95% credible 
intervals. Call β0

m , m M= 1, ,  this point estimate. Similarly call the credible interval 

( , )0 0L Um m . Estimate,

 • Bias = average m M
m Ana TRUE

�� � �� �1 0 0,...,
,

� � ;

 • MSE = averagem
m Ana TRUE
� �0 0

2
��� ��� �,

;

 • Coverage = Proportion of times that the central 95% credible intervals contained 

β0
,Ana TRUE ;

 • Expected length of central 95% credible intervals = average U Lm
m m{ }0 0− .

We extend the simulation to more scenarios by varying the values of of aπ and bπ in 
step 1(a). The values are given in Table 1. Simulation scenario S1  explores the perfor-
mance of the methods when variance of the inclusion probabilities a b� �/ = 12� �  is low; 
S2  when it is high; S3  when the distribution of πi has mode 0, and thus is very different 
from the lognormal distribution assumed by Full in Equation (9). S4  is different from 
the three other scenarios; here we set � �im im ix= 1 0.5� �  (excluding πi) in simulation 
step 1(d) so the IS generated in step 2 is, actually, non-informative such that sampling 
weights are not needed to correct the sample model. S4  explores the performance of the 
methods design to analyze informative samples when the design is actually non-inform-
ative, and thus the weights, �1/� i  are noise.

Table 2 shows the results. FULL and PSEUDO yield similar point inference quality 
(i.e., similar bias and MSE) but only FULL yields appropriate uncertainty quantification 
(i.e., CI reaching nominal coverage). In S S1 3- , FULL and PSEUDO perform similar in 
terms of bias and MSE, but the PSEUDO central 95% CIs undercover because this 
approach does not account for the uncertainty induced by the sampling design distribu-
tion. The FULL CIs coverage is similar to that for the benchmark SRS at the cost of 
being wider than SRS CIs. The sampling design can produce estimators that are more or 
less efficient, depending on the construction for inclusion probabilities. In general, the 
use of strata makes the sampling design more efficient than SRS, but clustering into 
PSUs (which is done for convenience of survey administration) is less efficient; mean-
ing, that it produces longer credible intervals. In S S1- 3 , POP yields, as expected, biased 

Table 1. Simulation Scenarios. Values of aπ and bπ and β0
Ana,TRUE

ij i1 i2:= E(y | u = u = 0)  in the 

Simulation True Distribution of � � �i
iid

gamma , a b� � in Simulation Step 1(a). In S4 the Design 

is Non-Informative, that is, yi i� � .

Simulation scenario aπ bπ β0

Ana,TRUE

S1 : low variance 4 2 3
S2 : high variance 5 1 6
S3 : exponential 1 1 2
S4 : non informative 4 2 1
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inference, showing the consequences of not adjusting inference for informative design. 
These scenarios, but particularly S3  where the simulation true exponential distribution 
of πi has mode at zero (while the density of any lognomal distribution evaluated at zero 
equals zero), show that FULL is robust against the violation of the lognormal distribution 
of the πis that is assumed in Equation (9). S4  shows that FULL and PSEUDO coverage 
is appropriate even when the sample is non informative.

As a side note, the data generating model in step 1, generates first the inclusion prob-
ability π (in 1.a) and then yi | πi in (1.d) while our proposed method (FULL) models yi  
and πi | yi . This may look counter-intuitive but in both, the data generating model and 
FULL, we are jointly modeling ( ,yi πi). So, it is not important whether y  is generated 
conditioned on π or the reverse.

6. Application to NHANES

To demonstrate our method, we model daily protein consumption while controlling for 
race/ethnicity, age, and gender, using the 2017 to 2018 NHANES nutrition dataset (CDC 
2016a). NHANES is a program of studies designed to assess the health and nutritional 
status of adults and children in the United States. NHANES oversamples subgroups of 
particular public health interest. During 2015 to 2018 NHANES oversampled certain race/
ethnic and age groups (Chen et al. 2020). The NHANES interview includes demographic, 
socioeconomic, dietary, and health-related questions. The objective of the dietary interview 

Table 2. Bias, MSE, Coverage, and Expected Length of Central 95% Credible Intervals Times 
1,000 Under Competing Models.

Method Bias 103× MSE 103× Coverage 103× Length 103×

S1: low variance, aπ = 4 and bπ = 2
FULL −9 17 967 470
PSEUDO 19 17 908 446
POP 501 267 15 478
SRS 0 12 950 434
S2: high variance, aπ = 5 and bπ = 1
FULL 28 67 948 1,080
PSEUDO 33 69 917 882
POP 986 1,039 29 947
SRS 13 54 936 881
S3: Exponential aπ = 1 and bπ = 1
FULL −6 32 971 853
PSEUDO 69 53 864 690
POP 1,002 1,028 0 583
SRS −4 13 931 429
S4: non-informative aπ = 4 and bπ = 2
FULL 1 3 951 205
PSEUDO 0 3 927 201
POP 0 2 942 184
SRS −2 2 945 184
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is to obtain detailed dietary intake, for example, daily protein consumption, from NHANES 
participants. All selected NHANES participants are required for two 24-hour dietary recall 
interviews. The first dietary recall interview is collected in person and the second by tele-
phone three to ten days later. The amount of meat, fish, milk, and other dairy foods data 
consumed (in the past twenty-four hours) for Day 1 and Day 2 are provided and NHANES 
releases the estimate protein intake of each participant at each day.

NHANES recommends using their sampling weights on the Day 2 when analyzing 
data of participants completing Day 1 and Day 2 dietary recalls. Day 2 weights are avail-
able for the 7,641 participants with Day 1 and Day 2 data. Among other adjustments, Day 
2 weights adjust for dietary recall data collection, and for weekdays (Monday through 
Thursday), and weekend (Fridays though Sundays).

The response variable is y protim im= ( 1)log +  where protim  is the NHANES esti-
mated grams (gr) of protein consumed by the participant i  during the past twenty-four 
hours before his/her Day m  dietary interview, i n= 1, ,  and m = 1,2 . Our covariates are 
race/ethnicity, age, and gender. Male is the gender reference category. Age is categorized in 
four brackets as [0–19], [20–39], [40–59], and [60–80] years old with [0–19] as reference 
group. Race/Ethnicity has five categories Mexican American, other Hispanic, non-His-
panic Black, other races, and non-Hispanic White with the latter as reference group.

We fit the models used in the simulation study (that does not include PSUs): FULL, 
PSEUDO, POP, and also an extension of our method to adjust for PSU (labeled FULL.
PSU) as described in Subsection 3.2. We recall that two-year NHANES cycle data con-
tains thirty PSUs. The vector of covariates in Equation (5) in this application is,

ut gender Age Age Age= 1,1 = ,1 [20,39] ,1 [40,59] ,1 [Female� � �� � �� � � 660,80] ,

1 / = ,1 / =

� ��
� �Race Eth Race EthMexican American Other Hispaanic

Non-Hispanic Black Other Race

� �
� � �

,

1 / = ,1 / =Race Eth Race Eth �� �

Here 1( )A  denotes the indicator function of the individual in the set A . For FULL and 
FULL.PSU, the covariate vector to model πi | yi , in Equation (9) and (15) respectively, 
vi , is set equal to v ui i= .

FULL and FULL.PSU results indicate that the design is informative for protein con-
sumption. As Table 2 shows, for FULL, the posterior mean (central 95% credible intervals) 
of κ y , in Equation (9), is −0.17 (−0.22, −0.13); while for FULL.PSU the mean of κ y , in 
Equation (15), is −0.31 (−0.36, −0.26). In both cases, the CI for κ y  does not contain zero.

Figure 1 shows that the methods yield different inference. The figure presents violin 
plots representing the posterior distribution of the grams of protein consumed by partici-
pants in the reference group, that is, of exp �0 1� � � , under all competing models. POP, 
the model ignoring the sampling weights, underestimates. The estimate under PSEUDO 
is the highest and its CI does not overlap FULL CI. The difference in point estimates 
between FULL and PSEUDO probably derives from the use of raw, noisy weights in 
PSEUDO. These noisy weights contain a sufficiently high variance unrelated to the 
response variable that at the released sample size there is estimation bias. The CIs under 
FULL and FULL.PSU overlap but FULL.PSU tends to yield higher standard deviations 
because FULL.PSU accounts for the possible non-independence of the outcomes of indi-
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viduals within the same PSU. Since NHANES uses a multi-stage sampling design infer-
ence under FULL.PSU is more appropriate.

Table 3 displays mean, standard deviation, and central 95% CI for the model parame-
ters for y y|�� , ,� �� , κ y  under FULL, FULL.PSU and PSEUDO. FULL and FULL.PSU 
produce similar point estimates except for the intercept for which FULL. PSU yields 
higher standard error, or equivalently, wider credible interval. This is expected because 
FULL. PSU takes into account the correlation of the responses within the same PSU (95% 
CI for ��  in Equation (14) is (0.02,0.05) ). Inference under PSEUDO is different.

7. Final Discussion

LS2019 proposed a method to include the sampling weights into the likelihood to perform 
Bayesian inference. They mainly focus on the linear regression with fixed effects. We 
extended their work to account for repeated measures by including a participant-specific 
random effect and modeling the inclusion probability for individual i , that is, πi | yi , as a 
function the average of all repeated responses for individual i , that is, yi , but we could 
have used any other linear combination of the entries of yi . Our simulation showed that 
(A) our proposed method, FULL, yields credible intervals with correct coverage at the 
cost of wider CI than if we were analyzing a SRS; (B) that this is not always the case for 
PSEUDO; and (C) that our method is robust against the violation of the lognormal distri-
bution of πi | yi  that it assumes. To check (C) the simulation true inclusion probabilities, 
in Section 5, were generated from gamma and exponential distributions. In LS2019 the 
robustness against this violation was explored more deeply. For example, in Subsubsection 

Figure 1. Violin plots along with, mean (dot) and central 95% credible interval (horizontal line) 
for the expected grams of protein consumed, exp( ) -10β , under all considered methods in the 
reference group (White male under 20).
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4.1.2 they generated the inclusion probabilities, πis, from a Beta (symmetric) distribution 
and, in Subsection 4.2, they used the 2013 to 2014 NHANES sampling weights as the 
simulation truth. Also León-Novelo and Savitsky (2023), in their Subsection 4.2, gener-
ated (correlated within cluster) sampling weights from a Dirichlet distribution. In all these 
simulation scenarios the Fully Bayesian method was robust against the violation of the 
assumed lognormal distribution of πi | yi . We also incorporated the PSU information fol-
lowing León-Novelo and Savitsky (2023) in Subsection 3.2.

Our method is computationally more expensive than other approaches. We rely on 
Stan to cope with this limitation. The coding of our method on Stan is simple as shown 
in the Appendix A.4. The lognormal distribution of πi | yi  with mean a linear combina-
tion of the entries of yi  and other covariates, as shown in Equation (9), remains a com-
putational restriction of our proposed approach. We aim to address this in future work. 
Another line for future work is to extend the method to binary and count responses.

In this Article, we treat the observed inclusion probabilities as known for the survey 
participants only. Here the inclusion probability, πi, is the joint probability of the indi-
vidual being selected and responding to the survey usually computed assuming inde-
pendence, as the product of each marginal probability (of inclusion and of responding). 
The inclusion probabilities, or equivalently the sampling weights, provided to the analyst 
(e.g., the NHANES dietary publicly available data) are usually adjusted for nonresponse. 
If the probabilities of being selected were known by the analyst while the one of being a 
respondent were estimated by the analyst, the estimation error of the latter could be 
accounted for by modeling the nonresponse probabilities.

A limitation of our simulation study in Section 5 is that it does not incorporate non-
response explicitly on the data generating process. πi is defined as the probability of both 
being selected and responding. We could have generated both the probability of selected to 
be invited to participate for individual i  π sel,i and their probability of responding (once 
invited) as πR,i . Assuming independence conditioned on the response and relevant covari-
ates, the probability of being selected or invited to participate in the survey and respond is 
� � �i sel i R i= , ,� , and we would propose to pass only πi to the data analyst. In our simulation 
study, we directly generate πi

 and pass it to the analyst. Yet, if πR,i  is estimated from the 
observed data (e.g., the probability of response for an invited person of Hispanic ethnicity is 
estimated as the response rate of Hispanics invited to participate), the nonresponse adjust-
ment induces a dependence between the Hispanic participants; nonresponse estimation from 
common data was not explored in the simulation section. The effect of adjustment for non-
response when non-response is estimated from common data is a future line of research.

A referee made the observation that if the weights are adjusting for three factors: (1) 
unequal probability of being invited to participate in the survey, (2) nonresponse, and (3) 
post-stratification, a more appropriate terminology for these weighs is “survey weights,” 
while “sampling weights” should be used to refer to weights adjusting for (1) only. We 
agree, this terminology is more descriptive of what these weights adjust for. We decided 
to keep the term “sampling weights” to match NHANES terminology where the sam-
pling weights are adjusted for (1), (2), and (3).

In summary, we propose a Bayesian method to the analysis of repeated measures 
under informative sampling that yields appropriate point estimates (low bias and MSE) 
and uncertainty quantification (CI reaching nominal coverage).
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A. Appendix

A.1. Derivation of ps in Equation (2) Under Informative Sampling

We construct the distribution of the observed sample taken under an informative design. 
This approach considers the population joint distribution of the response and inclusion 
probabilities,

( , ) , ( , , ) = ( , ) ( ), = 1, , ,y p y p y p y i Ni i i i i i i� � �| | | |�� �� �� �� �� ��   (A1)

where N  is the population size. Note that we are assuming � i iy��� ��| ,  and yi ��� ��| . 
Let Ii = 1  if the individual i  in the population becomes a participant and 0 if not. Bayes 
theorem implies,
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By definition of inclusion probability,
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Plugging (A3) and (A4) into (A2) yields (2)
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Here the superindex   denotes the quantg integrated out.

A.2. Likelihood in Equation (3) Justification

When we define the likelihood in Equation (3) we are asserting Equation (4) that, intro-
ducing the indicator variable Ii = 1  when population individual i  becomes a participant 
and Ii = 0  otherwise, can be written as

p y y I I I p y In n n i

n

i i i[( , ), ( , ) = = = = 1, , ] = [( , ) = 1,1 1 1 2 =1
� � �

 | |�� �� ��� ,, ]��  (A5)

We show below that this independence assertion follows if we assume the following 
three conditions for the model and the sampling design, respectively, that are the same 
ones given in Section 2 but in more detail:

(C1) ( , ) ,yi i� |�� �� , i N= 1, ,  are independent in the superpopulation model in (A1).

(C2) For any individual n +1 , conditioned on his/her response and inclusion proba-
bility, θθ  and k , the event of becoming the ( 1)n th+  participant is independent of 
any set of individuals Sn  becoming survey participants, their response and inclu-
sion probabilities (if the individual is already in Sn , we mean his/her probability 
of becoming a participant for a second time under sampling with replacement). 
Mathematically expressed,

Pr

Pr

I y y i S I i Sn n n i i n i n� � � � ��� ��1 1 1= 1 ( , ),{( , ) : },{ = 1: }, ,

=

| � � �� ��

II yn n n n� � � ��� ���1 1 1 1= 1 ( , ), ,| � ��� ��

where S nn = {1, , }  is the set of indices of first n  participants.

(C3) Conditioned on θθ  and κκ , the response and inclusion probability of a population 
individual is independent of the response and inclusion probabilities of the n  par-
ticipants already in the survey. In math,
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Proof.
All the probabilities below in this subsection are conditioned on θθ  and κκ . To ease nota-
tion we omit them, that is, we write p[ ] |  instead of p[ , , ] | �� �� . First we show 
the following statement that will be helpful in the proof.

Pr I I i S Pr In i n n� ���� �� �� ��1 1= 1 { = 1: } = = 1|  (A6)
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Proof of (A6):
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We prove our assertion by mathematical induction, when the sample size n = 1  the asser-
tion, that is, (A5), is trivial. We assume the assertion true for sample size n  and prove for 
sample size equal to n +1 . We need to show
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Once proven the above statement the assertion is proven since the induction step 
implies the right factor of RHS1  is �i

n
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Applying Bayes Theorem to ( )∗  we obtain
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A.3. Pseudolikelihood Approach in Savitsky and Williams

Here we derive the pseudolikelihood approach in Section 4. Savitsky and Williams 
(2019) considered cluster sampling and in their Theorem 2 they defined the augmented 
pseudolikelihood as:
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with wgm = 1/πgm, the specific weight for for unit m  nested within cluster g . Here the 
sample S  contains | |S  clusters S S S1 | |, , , each cluster with | |Sg  observations and δ g  
is the cluster specific random effect that models the correlation of the responses ygm  
within a cluster. The weights are standardized so that � �g S gm g S gw S� �= | |  the total 
number of responses. The contribution of the observation for a unit, ygm , to the pseudo-
likelihood is its PDF (or what it would contribute to the likelihood) exponentiated to its 
sampling weight, wgm . The prior distribution for the random effects is exponentiated by 
cluster-indexed sampling weights, wg . Each wg  is set equal to the average of the sam-
pling weights of the units nested within the cluster g .

In our context their cluster is a participant. So the index g  is i , | |=S Mg i  (the num-
ber of observations for the participant) w w mgm i= ∀  and, thus, w wg i=  and the weights 
are standardized so that Σ Σ

i

n
i i i

n
iM w M

=1 =1
=  the total number of participant/occasion 

measurements. For example if we have 100 participants with 2 observations the stand-
ardized sampling weights must sum 100 2 = 200× , that is, Σ

i

n
iw

=1
= 200 . Replacing g , 

Sg , wgm  and wg  for i , participant i , wi  and wi  in the equation above yields (16).

A.4. Implementation of (12) Using STAN

We can define the likelihood (12) in Stan in two ways:

1. Directly pass the loglikelihood to the log  of the full joint distribution, in stan, 
target, in pseudocode,
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log log |Like p
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s i iy � 

with ps  defined in Equation (11); or,

2. Specify in Stan the distributions of yim  and πi  in Equation (5) and (9), respectively, 
and add to the log of the full joint distribution, referred as target in Stan, the 
� � �log log�i denominator in Equation 10 , in pseudocode, this is,
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Stan code, note that the function fortarget_lpd in the code yields the equation above:
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functions{
real to_real(int x) { return x;}

real qxdelta(row_vector x,vector ddelta){
 /*Dot product of x and y*/
    return dot_product(x,ddelta);
}

real mupi (real A,real y,row_vector x,vector ddelta) {
 /*mean of pi, conditioned on A,x and delta*/
    return A*y+qxdelta(x,ddelta);
}

real muy (row_vector x,vector bbeta,real eta){
 /*mean of y, conditionrd on x,beta and the RE eta*/
    return dot_product(x,bbeta)+eta;
}

real fortarget_lpdf (// log of denominator in (9) in paper
    vector pis,     //Vector of inclusion probabilities in the second column
    matrix X_ybar,  //vector of averaged predictors (grouping by participant)
    matrix X_pibar, //Vector of predictors, the first column 1 so the model
        //for pi includes an intercept
    real suminvj_i, //sum_i 1/number of repeated measures of individual i
    vector bbeta,   //beta: regression coefficients in model for y
    vector ddelta,  //kappa_x: regression coefficient in model for log pi
    real A,         //kappa_y: Coefficient for y in the model for log pi
    vector eta,     //delta: Random effects for model for y
    real sigma2y,   //variance (of the residuals) in the model for y
    real sigma2eta, //variance of random effects
    real sigma2pi   //variance of (of the residuals) in model for log pi
   ){
   int n_individuals=num_elements(pis);
   real sum3=0;
   real sum4=0;
   for(i in 1:n_individuals){
    sum3 += qxdelta(X_pibar[i],ddelta);
    sum4 += dot_product(X_ybar[i],bbeta);
   }
   return(-
       sum3-
       n_individuals*sigma2pi/2-
       A*sum4-
       A^2*(suminvj_i*sigma2y+n_individuals*sigma2eta)/2
   );
  }
}//end of the block functions

data{
   int n_participants;     //Total number of participants
   int nobs;               //length of the response vector
   int p_y;                //number of predictors including the intercept
                            //in the model for y int p_pi;
                            //number of predictors including the
                            //intercept in the model for pi
                            //(inclusion probabilities), besides y
   vector [nobs] ys;       //vector of participant/ocassion measurments
   vector [n_participants] pis;//Vector inclusion probabilities
   int xi [nobs];          //index for REs. xi[i] is the individual to
                            //which the measurement y[i] belongs.
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                            //This is measurement y[j] corresponds
                            //to participant i=xi[j]
   matrix[nobs,p_y] X_y;   //U in paper: matrix of covariates for model for y,
                            //first column must be 1 to include intercept
   matrix[nobs,p_pi] X_pi; //V in paper: Matrix of covariates for model for pi,
                            //first column must be 1 to include intercept
}

transformed data{
vector [n_participants] ys_bar;
int    Ms [n_participants]; //Vector of number of observations e.g. Ms[1]=2
                            //indicates individual 1 has 2 repeated measures
real suminvj_i=0;
matrix [n_participants,p_y] X_ybar;
matrix [n_participants,p_pi]X_pibar;

for(i in 1:n_participants){Ms[i]=0;};
ys_bar=rep_vector(0.0,n_participants);
X_ybar = rep_matrix(0.0,n_participants,p_y);
X_pibar =rep_matrix(0.0,n_participants,p_pi);

for(j in 1:nobs) {
ys_bar[xi[j]]+=ys[j];
Ms[xi[j]]+=+1;
X_ybar[xi[j]]+=X_y[j];
X_pibar[xi[j]]+=X_pi[j];
}

for(i in 1:n_participants)
{suminvj_i+=1/to_real(Ms[i]);
ys_bar[i]=ys_bar[i]/to_real(Ms[i]);
X_ybar[i]=X_ybar[i]/to_real(Ms[i]);
X_pibar[i]=X_pibar[i]/to_real(Ms[i]);
}

}
parameters {

real <lower=0> sigmapi;  //Standard deviation of residuals in model for log
real <lower=0> sigmay;   //Standard deviation in residuals in model for y
real <lower=0> sigma_eta;//Standard deviation of Random effects in model for y

real A;                  //kappa_y in the paper: regression coef associated
                         //with y in model for log pi Ay+. . .
vector[p_y] bbeta;       //beta: regression coefficients in model for y
vector[p_pi] ddelta;     //kappa_x: regression coefficients in model for log pi
vector[n_participants] eta; //in paper delta_i:
                         //participant-specific RE for model for y
}

Model{
bbeta~  normal(0,100);
ddelta~ normal(0,100);
A~      normal(0,100);

eta~ normal(0, sigma_eta);
sigma_eta normal(0,1);

sigmapi~ normal(0,1);
sigmay   normal(0,1);
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for(j in 1:nobs)// Response distributed according to (3) in paper
ys[j] normal(muy (X_y[j],bbeta,eta[xi[j]]),sigmay);

      }
      for(i in 1:n_participants)//inclusion probabilities distributed as in (8)
      pis[i] lognormal(mupi(A,ys_bar[i],X_pibar[i],ddelta), sigmapi);
      }
      //adding the denominator in (9) to the log of the full joint distribution
      target +=fortarget_lpdf(pis|//Vector of inclusion probabilities

X_ybar,    //Vector of (averaged) predictors for model for y
X_pibar,   //Vector of (averaged) predictors for model
           //for pi ys_bar+X_pibar,
           //the first column is 1 so the model includes an intercept
suminvj_i, //sum_i (1/number of repeated measures of individual i)
bbeta,
ddelta,A,
eta,
sigmay^2,
sigma_eta^2,
sigmapi^2);

}




