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Lohr and Raghunathan (2017) is an excellent recent review paper on the subject of combining 

survey data with other sources, which corresponds exactly with the issue at hand (combining SOII 

and OSHA). Lohr and Raghunathan outline several general approaches for combining survey from 

multiple studies in their Sections 2 through 8. These can be divided into ‘macro’ approaches 

(approaches which combine or adjust estimates at a high level), ‘micro’ approaches (approaches 

which link individual records in some way, and ‘amalgamate’ the sources), and combinations of 

macro and micro. These basic categories will inform the literature review. Section 2 provides an 

overview of the macro approaches and Section 3 the micro approaches. The Appendices provide 

details of the individual articles relevant to each topical subsection. Section 4 provides a discussion 

of all of this material in the context of BLS’s needs for the OSHA/SOII initiative.  

 

 

Introduction: Lohr and Raghunathan (2017) 
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The macro approaches, also called ‘basic area level approaches’ in Rao (2003), are as follows: 

 
 Calibration; 

 Multiple frame methods; 

 Small-area estimation basic area level models; and, 

 Hierarchical models. 

These are discussed in Sections 2.1 through 2.4 respectively. 

 

 

2.1 Calibration Approaches 

Calibration is a methodology in which one study provides ‘control totals’ for particular population 

domains (at a high level of quality: very low or zero mean squared error), which are used to calibrate 

estimates from the other study. This is ideal for a situation in which one study (the ‘gold standard 

study’) is of the highest quality, but only provides estimates for a limited set of characteristics (in the 

classic case, this would be population totals for particular domains). The other study (the ‘main 

study’) provides a much more extensive amount of data, but has higher sampling variance and 

possibly other sources of survey error (biases). Calibration can reduce the variance for any 

characteristics from the main study which are correlated to variables available in the gold standard 

study, and can also successfully reduce biases in the estimates from the main study as well. 

Calibration is used extensively in survey practice, and there is an extensive literature regarding its 

properties. Section 2 of Lohr and Raghunathan (2017) provide an overview of calibration and a set 

of references.  

 

Appendix A provides details of two references from Merkouris (2004, 2010). These are directly 

relevant to the OSHA/SOII application, as they apply to multiple surveys of the same population 

that need to be reconciled. In his first paper, Merkouris provides a composite estimator of the two 

surveys, with calibration of each to independent control totals, with the additional constraint that 

Overview of Macro Approaches 

2 
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they ‘calibrate to each other’: they are required to match estimates for totals for particular common 

items. In the OSHA/SOII context, the OSHA and SOII estimates could be calibrated to each other. 

His second paper then expands to the case of domain estimation, comparing schemes which utilize 

different levels of domain-specific information. A strong point of this approach is that it is easy to 

implement. A weak point is that it doesn’t explicitly deal with bias: it only corrects biases that can be 

fixed by calibrating to control totals. The OSHA data is likely to have more serious biases that 

cannot be so easily corrected.  

 

 

2.2 Multiple Frame Approaches 

Multiple frame approaches are similar to the composite estimation and calibration approach 

described in the previous section, but it does not assume that both frames cover the full population. 

Generally, the union of the frames is assumed to cover the full population.  

 

The classic multiple frame method has two independent samples from two frames A and B 

respectively, with the population divided conceptually into three mutually exclusive, exhaustive 

domains 𝑎, 𝑏, and 𝑎𝑏 (𝑎𝑏 is the intersection of A and B, 𝑎 contains elements only in A, and 𝑏 

contains elements only in B). Domain 𝑎 is covered by the A sample, domain 𝑏 by the B sample, and 

a simple linear combination between the two samples provides an optimal estimator for domain 𝑎𝑏. 

The weights allocated to each sample in this linear combination may be based on relative precision, 

or on other factors. In some cases, both samples may be viewed as unbiased estimators of the 

domain ab, in which case relative precision is based on sampling variance alone. In other cases, the 

two sample estimators have differing expectations due to mode effects, differential nonresponse, 

etc., which adds bias considerations to the relative precision. In the OSHA/SOII context, SOII 

would cover the whole universe with the OSHA component only covering a portion of the universe 

(so that B is actually a subset of A, and 𝑎𝑏 is equal to B). We need also to view the OSHA 

component as having a bias due to mode-type effects. Section 5 of Lohr and Raghunathan (2017) 

give an overview of multiple frame methods and a set of references.  

 

Appendix B provides a detailed review of papers by Lohr (2011), Brick et al. (2011), and Lohr and 

Brick (2012, 2014). The Brick et al. (2011) papers covers the application of combining landline and 

cellphone samples in telephone surveys. Lohr and Brick (2012) present an application from the 

National Crime Victimization Survey. These papers go beyond the Merkouris papers in that they 

allow for the modelling of bias directly. The biases in the Brick et al. (2011) paper are generated 
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from nonresponse differentials. The Lohr and Brick (2012) paper relating to the National Crime 

Victimization Survey allow for mode biases as well as biases from nonresponse differentials. Biases 

are difficult to estimate without auxiliary information of some kind: in the Lohr and Brick (2012) 

paper the leverage to estimate biases is gained by shrinking domain bias estimates to national-level 

bias estimates, assuming that mode effects are equal (or close to equal) across domains. Lohr and 

Brick (2012) rely on a non-Bayesian random effects model, generating Empirical Bayes type 

shrinkage estimates.  

 

 

2.3 Small-Area Estimation Basic Area Models 

Small-area estimation basic area models (Type A models in the terminology of Rao (2003)) are 

similar to multiple frame methods in that for any particular domain they may be based on two 

estimators which are linearly combined using weights which are based on relative precision. One of 

these estimators may be an unbiased estimator, but with high variance, and the other may be biased 

but with much lower variance. Small-area estimation differs from classic multiple frame methods in 

its reliance on an explicit model regarding the estimated values. The low-variance estimator is 

model-design unbiased: unbiased if the model is true. Model misspecification will lead to bias. The 

original paper on direct small-area estimation is Fay and Herriot (1979). The first part of Section 6 of 

Lohr and Raghunathan (2017) provide an overview of small area methods. If credible models can be 

developed linking OSHA estimates to SOII estimates, then a small-area estimation direct approach 

could be an option.  

 

Appendix C has a detailed reviews of two papers regarding county-level estimates of cancer risk 

prevalence values based on a low-bias national survey (the National Health Interview Survey: NHIS) 

and a high-bias survey with sufficient sample sizes at the county level (the Behavior Risk Factor 

Surveillance System: BRFSS): Elliot and Davis (2005) and Raghunathan (2007). The source of bias in 

BRFSS originates in the population imbalance induced from relying on landline-only telephone 

samples and due to low response rates.  

 

Elliot and Davis (2005) deal with BRFSS’s coverage biases in an innovative way: weighting factors 

are attached to the BRFSS sample weights which ultimately adjust the BRFSS estimates to NHIS 

estimates at the regional level. An important aspect of this is again being able to apply regionally-

based adjustments at the county level (particular critical conditional probabilities are assumed to be 

equal across counties). This approach works to adjust the biases, but at the cost of variance inflation 
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from the weighting adjustments. This variance inflation is large enough to force Elliot and Davis to 

develop hybrid estimators to minimize mean-squared-error (not relying entirely on the bias-adjusted, 

but high-variance, weight-adjustment estimates).  

 

Raghunathan et al. (2007) addresses the same problem with a more standard small-area estimation 

framework. The basic building block is a county-level vector of NHIS telephone household 

prevalence, NHIS non-telephone household prevalence, and BRFSS telephone household 

prevalence. The Raghunathan researchers differ from Elliot and Davis in having access to county-

level identification information for NHIS, allowing the construction of county-level estimates (Elliot 

and Davis worked with the NHIS public-use file, which allows for only construction of regional 

estimates). The two NHIS estimates have high sampling variability at the county level (and 

sometimes samples do not exist at all), but no assumed bias. The bias in the BRFSS estimates is 

addressed directly as a parameter at the county level and its variability is partially explained via 

county-level information. This allows for credible bias estimation. The Raghunathan approach is a 

full-scale Bayesian approach (with hierarchical priors).  

 

Appendix C also provides some information about a theoretical paper Ybarra and Lohr (2008) 

which deal with the issue of measurement error in the covariates used in the small-area estimation 

model (a generally overlooked issue). 

 

Kim, Park, and Kim (2015) provide a similar small-area estimation approach for the case in which 

one has a ‘gold-standard’ measurement from a small survey nested within a larger survey which has 

flawed measurement for which bias has to be allowed for. Estimation is done for a large set of 

small-area domains. They develop a non-Bayesian theory which is comprehensive, and leads to 

Empirical Bayes type estimators. The paper makes a fairly strong assumption that the bias from the 

measurement error is constant across domains. If this is judged to be a reasonable assumption finally 

in the OSHA/SOII application, then this theory will be very helpful. Otherwise the more 

complicated models that allow for differential biases will be needed.  

 

 

2.4 Hierarchical Models for Combining Data Sources 

Hierarchical models for combining data sources arises from the meta-analysis paradigm. Under this 

paradigm, many studies are essentially estimating the same quantity. The models developed for 

bringing these estimates together are similar to multiple frame models and small-area basic area level 
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models, but have a more explicit Bayesian approach. The regression-type models defining the means 

from the various studies are simpler than many small-area basic area models, but with a random-

effects assigned for the means. It also is a Bayesian hierarchical model with defined prior 

distributions. Section 7 of Lohr and Raghunathan (2017) discuss recent work in this area.  

 

Appendix D presents details about Manzi et al. (2011), which provides a Bayesian model for 

combining small area smoking prevalence estimates in 48 Local Areas in Eastern England. All of the 

various estimators which are combined together are assumed to have biases associated with them. 

The primary ‘leverage’ in getting at biases in this application is that the 48 Local Areas should 

aggregate to a UK General Household Survey prevalence estimate for Eastern England which is 

assumed to be unbiased. Manzi et al. also develop a non-Bayesian two-way ANOVA type approach 

leading to Empirical Bayes which is similar to the Lohr and Brick (2012) model, except that Lohr 

and Brick assume that one of their component estimates is unbiased. In the Manzi et al. application, 

the unbiased benchmark is the General Household Survey overall regional prevalence estimate.  

 

Appendix D also has a similar application from the National Agricultural Statistical Services (NASS) 

for US Corn Yields. Three different programs estimate corn yields: (1) a probability sample of farms 

in which corn is measured by NASS personnel (an ‘objective’ survey), (2) a monthly interview 

sample of corn farmers with some coverage exclusion, and (3) a December national interview survey 

of corn farmers with no coverage exclusion. The three of these are put together using a Bayesian 

model. The December national interview survey is assumed to be unbiased. The objective survey 

appears to suffer from measurement-error bias and the monthly interview survey of corn farmers 

excludes large farms for burden reasons. Wang et al. (2011) provide a Bayesian approach for 

bringing the three surveys together for a national estimate. Leverage in estimating the biases in the 

two surveys assumed to have biases is gained by specifying a substantive process model which 

models true corn yield as a function of exogenous variables such as weather and amount of corn 

planted in the spring. Nandram et al. (2014) extend the Bayesian model to cover state-level domain 

estimates.  
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The micro approaches, also called ‘basic unit level approaches’ in Rao (2003), are as follows: 

 
 Linking information from individual records; 

– Deterministic record linkage (DRL); 

– Probabilistic record linkage (PRL); 

– Data fusion; 

 Imputation; 

These are discussed in Sections 3.1 and 3.2 respectively. 

 

 

3.1 Linking Information from Individual Records 

Linking information from individual records between OSHA and SOII would be the basis of any 

credible unit-level approach, as unit-level data from the two surveys cannot be well-combined unless 

they are linked (identical records are recognized as being such). There is a burgeoning literature in 

this area. DRL is an exact link between records from two files based on a comprehensive set of 

matches. DRL may be possible in the OSHA/SOII context especially if the Employment 

Identification Number (EIN) was included in the OSHA data collection. PRL allows for uncertainty 

in the link. A similarity score is assigned that quantifies the degree to which two records may be the 

same record. There are also Bayesian versions of PRL. Section 3 of Lohr and Raghunathan (2017) 

discusses recent work in this area.  

 

This section (and Appendix E) will be divided into two subsections, 3.1.1 and 3.1.2, which 

correspond respectively to portions of the recent literature. The first subsection will cover methods 

and models for PRL. The second subsection will deal with the related issue of evaluating the effect 

of PRL on analyses of the imperfectly linked data sets and developing methods for avoiding bias in 

analyses from inaccurate linkages.  

Overview of Micro Approaches 

3 
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3.1.1 PRL: Methods and Models 

Appendix E.1 gives an overview of three references for data linkage: Christen (2012), Bohensky et 

al. (2010), and Winkler (2014). Christen is a book which provides a useful summary of current 

methods in actually accomplishing data linkage, including theoretical overviews, and discussion of 

currently available software. Winkler provides a further recent overview of current methods in data 

linkage. Winkler’s paper overlaps much of the other material discussed in this literature search, so it 

is not discussed, but it is a good further summary. Bohensky et al. (2010) is a meta-review paper of 

data linkage as it is practiced in the medical research literature.  

 

Winglee et al. (2005) provide a case study from the Medical Expenditure Panel Survey (MEPS). 

MEPS collects information about ‘medical events’ such as hospital stays annually from both 

household respondents (self-reports of medical events in the past period), and the medical providers 

for those same events. The linkage between these files is imperfect and using identifying fields such 

as event dates and other information about the medical events. From the Winglee et al. paper it 

appears that MEPS uses traditional probabilistic linkage methods (Fellegi and Sunter 1969) based on 

setting cutpoints for potential pairs based on the degree of matching using the linkage fields. Their 

paper is a discussion of research that they did to refine the definition of these cutpoints using 

methodology from Belin and Rubin (1995), and also simulations. 

 

There are a number of recent papers that develop Bayesian models for linking data files in a 

probabilistic way. Appendix E.2 provides the details. Goldstein et al. (2012) presents theory for 

linking a ‘File of Interest’ (FOI) with a ‘Linked data File’ (LDF). The FOI is the primary file for 

which analysis is done, and the LDF provides auxiliary information. Each relevant record on the 

FOI is linked to multiple records on the LDF, with a vector of probabilities defining the posited 

probability that a particular LDF record links with the FOI record (the probabilities in the 

probability vector add to 1 for each FOI record). Goldstein et al. mixes this probability vector with a 

second factor which defines a multiple-imputation type distribution for the FOI record. In this 

sense, this Goldstein paper may also belong in Section 3.3 (or may exclusively belong there) because 

it mixes linking and multiple imputation methods to fill out the FOI file records.  

 

Steorts et al. (2016) is a full-scale Bayesian approach to the process of linking LDF records to FOI 

records. They define latent random variables of ‘true persons’ and link the ‘true persons’ to records 

on the LDF and FOI files, with corresponding probabilities. They also define a latent random 

variable that determine if a particular field on a particular record is distorted. Distorted fields will 
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obscure links which are valid. Their complete Bayesian formulation of this whole structure generates 

posterior probabilities of linkages between records that can be used to make final linkages.  

 

Gutman et al. (2013) provides another Bayesian model. Their application is for linking persons who 

have died in the United States, with cause of death on one file, and Medicare expenditures on the 

other file. They have strong blocking variables based on demographics and geography (creating 

blocks with small cells), but not strong matching within the blocks. They define as a random variable 

a linking vector within each block. The sample universe of these vectors define all possible pairs 

between the files (within the blocks). By fitting a Bayesian model with these vectors, the field values 

on each file, and a set of appropriate parameters, they implicitly are allowing for a wide range of 

pairings with implicit PRL probabilities assigned to each possible pair. The models then are fit 

directly.  

 

Tancredi and Liseo (2015) and Gutman et al. (2015) present further related Bayesian models: the 

former paper for a regression model and the latter paper a survival analysis type model. In both 

cases, they draw the matching process and the model more fully together, so that the model itself 

informs the assignment of matching probabilities (those match pairs that agree more closely with the 

regression model are marginally favored). This may be less useful in the context of OSHA/SOII 

where many different analyses may be done with the final data set. 

 

 

3.1.2 PRL: Imperfect Links and Potential Biases 

There are a number of recent papers reported in Appendix E.3 where there is a (non-Bayesian) 

analysis of the effects of imperfect data linkage on analysis, and on ways of adjusting for this 

effectively. Lahiri and Larsen (2005) and Kim and Chambers (2012) present results for linear 

regression. Chipperfield et al. (2011) presents results for contingency tables and logistic regression. 

In all cases, the approach is to estimate a probability for the link that is used, and include this 

probability into the estimating equations for the analysis. Doing this is asserted as eliminating any 

biases from imperfect linkages. Kim and Chambers differs from the other two papers in designating 

an overall probability of mislinking based on exchangeability arguments, whereas the other two 

papers define distinct probabilities for each possible pair (though in estimating these, the 

probabilities may be the same for particular propensity estimation cells). Hof and Zwinderman 

(2015) present a more general likelihood model that defines in its likelihood all possible pairs 

between two files to be matched. The probabilities of linkage are incorporated in this way into the 

likelihood estimating equations. To estimate linkage probabilities Lahiri and Larsen use a mixture 
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model derived from an earlier paper by Larsen and Rubin (2001). Details on Larsen and Rubin’s 

paper are in Appendix E.1. In all these cases, clerical review on a subset of pairs is the main leverage 

for estimating linkage probabilities.  

 

 

3.2 Data Fusion 

Unlike data linkage, data fusion proceeds without a direct link (deterministic or probability) between 

two pairs of records on the two files. Under data fusion, sets of records are matched between two 

data sources, allowing for the exploration of correlational relationships.  

 

Appendix F presents a paper by Moriarity and Scheuren (2001) which provides an overview of data 

fusion (statistical matching). Their starting point is a paper by Kadane from 1978 which is reprinted 

with their 2001 paper. Kadane (2001) sets out a theoretical approach for the basic scenario of having 

one file with records with an X vector and a Y vector, and a second file with records with an X 

vector and a Z vector, and wanting to do analysis of the joint distribution of (X, Y, Z). If one is 

willing to make the strong assumption of conditional independence of Y and Z given X, it is easy 

enough to match a record (𝐱𝟏, 𝐲𝟏), (𝐱𝟏, 𝐳𝟏) on 𝐱𝟏and create a synthetic record (𝐱𝟏, 𝐲𝟏, 𝐳𝟏). If there 

is a posited correlation between Y and Z conditional on X then creating a synthetic file for analysis 

is much more difficult. One needs to posit the correlation up front, and then synthetic files can be 

generated with this correlation built in. Moriarity and Scheuren criticize the Kadane approach as not 

succeeding in producing synthetic data sets that actually match the posited (Y, Z) correlations. Their 

approach produces random residuals for Y on the one file and for Z on the other file, and then 

matches on (X, Y, Z) using this augmented file. Simulation studies find that this matching approach 

provides a synthetic file that has all of the correct distributions. This ‘right’ matching approach 

doesn’t seem too much different however than a mass imputation approach.  

 

Rässler (2002) presents a further overview of statistical matching. In her monograph, she presents a 

solution to the statistical matching problem through Bayesian multiple imputation, treating the 

missing Y data in the Y-missing file and the missing Z data in the Z-missing file as missing data, 

assuming the missing blocks in the two files are data which are ‘missing at random’ conditional on 

X1. She assumes multivariate normality, and draws the equivalent of the Y and the Z vector for 

filling in the data using standard multivariate normal multiple imputation. The key difference with 

                                                 

1 In Rässler’s presentation, the data known on both files is Z (rather than X), and the missing data is X and Y (not Y and Z). To avoid 
confusion in the presentation, we’ve used the Moriarity and Scheuren notation, but note this if you wish to follow up by referencing 
Rässler’s monograph.   
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standard multiple imputation with a single data set (and missing blocks of Y and Z) is that the 

conditional covariance between Y and Z is completely unknown, and has to be specified arbitrarily 

or drawn from a prior distribution for that parameter (in standard multiple imputation with one data 

set, the data set would provide data-based estimates of the conditional covariance which would feed 

into the computation of posterior distributions). Appendix E provides further details. Rässler’s 

preferred multiple imputation approach differs very little from those described in Section 3.2 below, 

and her work on this approach could easily be included in that section.  

 

 

3.3 Imputation 

Imputation is primarily a tool for dealing with item-level missing data in a single survey, but can be 

applied in this context. The two surveys are viewed as a large single survey, with items on one survey 

but not the other considered as a species of item-level missingness. The large literature on 

imputation can then be utilized to provide models to allow for a ‘filling-in of the item nonresponse’, 

accomplishing in this way a fusion between the data sets. In cases where there is a solid linking 

between sources (e.g., DRL), and no mode differences, imputation can be a powerful and flexible 

instrument for achieving source fusion. The methodology is also applicable where PRL or Data 

Fusion is possible, but is less useful in the presence of mode differences between the two data 

sources, where the item outcomes must be viewed as being from differing population distributions. 

Section 4 of Lohr and Raghunathan (2017) discusses recent work in this area. 

 

Appendix G details a number of papers that apply imputation methods in this context of combining 

surveys. Raghunathan (2006) and Schenker et al. (2010) present an application which is similar to the 

OSHA/SOII context using cancer prevalence items (smoking, obesity, diabetes). The National 

Health Interview Survey (NHIS) asks individuals for self-reports on these topics and those are 

assumed to have measurement error. The NHIS is a large nationally representative sample. The 

National Health and Nutrition Examination Survey (NHANES) has clinical measurements which 

are assumed to be without measurement error, but its sample is much smaller. Schenker et al. link 

the two studies by generating a model based on linking the NHIS self-report items to the clinical 

information on NHANES (the self-report items are also asked on the NHANES questionnaire). 

They apply this model to generate mass multiple imputations on the NHIS records (self-report to 

imputed clinical report). In this way, the bias from self-reporting on NHIS is estimated and can be 

eliminated (if the model is valid).  
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He et al. (2014) provide a second example regarding hospice use for lung and colorectal cancer 

patients from the Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) 

sponsored by the National Cancer Institute (NCI) in 2003-05. There are two different sources for 

hospice use information: Medicare claims and medical records. Medicare claims are assumed 

accurate but only apply for age 65+ persons. Medical records can sometimes be incomplete about 

hospice use in particular. He et al. construct a Bayesian latent variable multiple imputation type 

approach to yield an overall estimate. They make the key assumption that hospice use is implied if 

either Medicare or medical records claim it, but missing records or ‘no’ in both does not necessarily 

mean no hospice use. They assume overreporting of hospice use by these sources is not possible: 

only underreporting. Appendix Section F.2 provides details. In the OSHA/SOII context, it may be 

possible to assume that overreporting of occupational injuries or sicknesses cannot occur, only 

underreporting: a positive report from either OSHA or SOII can be taken at face value. As He et al. 

argue in their context, this assumption facilitates identifiability.  

 

Yucel and Zaslavsky (2005) present a similar example regarding the effect of chemotherapy in the 

two-year survival rate for colorectal cancer. The primay data source is the cancer registry for the 

state of California, which in principle is a census of all persons in California who are diagnosed with 

colorectal cancer (similar to the plan for OSHA for occupational injuries and illnesses). This registry 

suffers from underreporting of certain aspects of patients’ records, in particular whether the patient 

received chemotherapy or not (as chemotherapy is done sometimes by other doctors and clinics 

than those responsible for the primary care of the cancer, and the report of it falls through the 

cracks, so to speak). The Quality of Cancer Care project was a validation study that drew a sample of 

patients in the California registry for followup with surveys of the presiding physicians. The 

physicians could provide more accurate information about the true course of therapy for the patient 

including whether or not the patient received chemotherapy.  

 

The Yucel and Zaslavsky framework is thus similar to the OSHA/SOII framework in that there is a 

larger, and assumedly more complete database (OSHA/ state registry), with most of the population 

covered, but with inaccurate information, and a smaller study (SOII/Quality of Cancer Care project) 

with better data. In this case, there is no issue with linking: the Quality of Cancer Care sample units 

are drawn directly from the Cancer Registry. The validation study is fairly small (1,956 patients; 

1,422 respondents).  

 

Appendix G shows that the Yucel and Zaslavsky approach is a mass imputation approach: a model 

is developed using the sample data linked with the registry data, and this model is used to generate 
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mass multiple imputations for the registry data. He and Zaslavsky (2009) extend this approach to a 

multivariate vector of therapies (rather than a single therapy indicator).  

 

Finally, Appendix G also gives a short description of Dong et al. (2014a, 2014b) which provides a 

theory of mass imputation to create a population from a complex survey data set. This may be of 

value in ‘unraveling’ a complex survey sample to compare to a population-based data set from the 

same frame.  Normally the unit-level records from a complex survey sample shouldn’t be used out 

of the context of the complex sample design from which they were derived. This approach allows 

one to pry away that context and get back to a population-type data set that has no sample design 

that needs to be respected and considered (at the cost of considerable effort).  
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The literature provides two major branches in bringing two surveys such as OSHA and SOII 

together: a macro and a micro approach. Sections 4.1 and 4.2 will summarize these two approaches 

respectively, and Section 4.3 will provide further conclusions.  

 

 

4.1 Review of Macro Approaches in the Context of the 

OSHA/SOII Application 

The macro approach keeps the two surveys and their estimates separate, and builds a composite 

estimator from the separate survey estimates. This will generally entail a partitioning of the 

population universe into discrete strata. In some cases, one or the other surveys may not cover part 

of the population universe, in which case the estimator for that stratum will be from one of the 

surveys only. In other parts of the population universe where there is overlap, both surveys 

contribute to a composite estimator.  

 

If both surveys are believed to be unbiased estimators, then the weights for each survey estimator in 

the composite estimator can be computed based on relative precision alone. The composite weights 

are proportional to the estimated precision of each estimator. Calibration methods can be used to 

benchmark to auxiliary sources of data to improve the precision of the composite estimator. For 

small domains, small-area estimation type models can be utilized to further bolster the estimator by 

borrowing strength across domains (using auxiliary information). The work in Ybarra and Lohr 

(2008) on adjusting for auxiliary information measurement error should be considered when the 

auxiliary information has measurement error on the same order of magnitude as the primary 

estimates, to provide accurate evaluations of the level of mean squared error.  

 

If one of the two surveys is viewed to have bias, then simple precision-based composition is not 

possible. The OSHA/SOII application certainly falls into this category, as the OSHA estimates have 

to be suspected as having bias from measurement error (companys’ failure to fully and accurately 

report on their occupational safety and health) and low response rates. In most cases in the literature 

(with a few notable exceptions such as Manzi et al. (2011)), one of the survey estimators (the 

Conclusions and Review in the Context of the 

OSHA/SOII Application 
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‘primary survey’ below) is viewed as being unbiased, with the other survey estimators (the ‘secondary 

survey(s)’ below) assumed to be potentially biased. This bias can arise from nonresponse, lack of 

coverage, or mode differences. In the OSHA/SOII application, the SOII estimate would be viewed 

as unbiased (not because it is exactly, but it is relatively unbiased after all adjustments are made for 

effects of SOII survey nonresponse, and is accepted then as such in composite estimation).  

 

This bias is not easy to evaluate. A naïve estimator of it is the simple difference between the two 

survey estimates. But then all the data from the secondary survey really only goes into estimating the 

bias, and in reality the primary survey is carrying the load of estimating the population value. The 

bias has to be deconstructed in a way that allows the secondary survey to provide information to the 

estimation of the population value.  

 

Lohr and Brick (2012) provide a random effects type approach. The primary survey estimator is 

assumed to be unbiased, and the secondary survey estimator has a bias which is estimated directly at 

the national level. Within subdomains, the biases are allowed to be different across subdomains, but 

the subdomain biases are shrunk to a national level bias estimate by random-effects Empirical Bayes 

type methods. These methods could be applied in the OSHA/SOII context. Raghunathan et al. 

(2007) provide a similar but more explicitly Bayesian approach, and provide a model which implicitly 

breaks down the secondary survey biases at the county level using demographic characteristics: a 

substantive explanatory model of the relevant bias levels. Wang et al. (2011) also provide a 

substantive explanatory model which allows for leverage in the measurement of bias levels in an 

explicitly Bayesian model. The general theme in the literature is that good models have to be 

developed to allow the necessary leverage to measure biases in secondary surveys. A Bayesian 

approach allows for the full application of this model-based approach, but random-effects Empirical 

Bayes is also used in current applications.  

 

For the simpler methods such as the multiple frame methods, it may be possible to evaluate 

precision with no reference to the estimation variable. In this case, the composite estimation method 

can be implemented by assigning a single set of weights to all units in the multiple files comprising 

the composite estimation method. Most of the methods described in Appendices A and B can be 

done this way. Otherwise, if the parameters of the composite estimator depend on the estimation 

variable, then each estimation variable may have a separate composite estimator. There cannot be 

one set of universal weights. The methods described in Appendices C and D fall into this category. 

The form of the composite estimator varies across the estimation variables, so each estimation 

variable has to be run through the composite estimation system individually.  
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4.2 Review of Micro Approaches in the Context of the 

OSHA/SOII Application 

The micro-level approaches relevant for the OSHA/SOII application can be divided into 

probabilistic linkage approaches, data fusion, and imputation approaches. Data fusion is an 

approach where data sets with partially overlapping field sets are merged (one data set has one set of 

fields, the other data sets another set of fields, with some overlapping fields that can be used in 

linking). Data fusion is suboptimal compared to probabilistic linkage, as one is forced to make 

strong prior assumptions about the correlation structure between the nonoverlapping fields sets. 

The relevant question items in OSHA and SOII have considerable overlap in this case, so data 

fusion with its deficiencies doesn’t likely need to be considered, except possibly for limited items (or 

restricted strata with more limited reporting requirements).  

 

Probabilistic linkage is a complex methodology for linking the records from two surveys covering 

the same population when deterministic linkage (linkage based on a gold standard common 

identifying field) is not available. There are a variety of different approaches to this in the literature. 

In the ‘classical approach’ going back to Fellegi and Sunter (1969), one estimates the probability of a 

link to a particular File Of Interest (FOI) record and then chooses the field from the Linked Data 

File (LDF) record with the highest probability of linking to the FOI record. There is a large 

literature (and software available) for carrying this out. 

 

There are a number of references discussed in Section E.3 which accept a set of ‘best’ single 

probabilistic links between FOI records and LDF records, but attempt to account in regression 

analyses for the uncertainty inherent in the probabilistic link, by incorporating estimated linkage 

probabilities into the regression estimating equations (in some form).   

 

A second, more theoretically ambitious set of references go beyond a single link and work directly 

with a vector of LDF records linking to each FOI record, with a vector of corresponding linkage 

probabilities. These can result in a multiple imputation type approach in which multiple imputations 

incorporate into each augmented FOI record a set of linked field information from multiple donors 

from the LDF file. Several references provide a fully Bayesian analysis which does not create a final 

set of multiple imputation files but completes a full analysis from a Bayesian standpoint.  
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Finally, the imputation methods discussed in Section 3.3 describe further more explicit imputation 

methods. The Schenker et al. (2010) application deals with measurement error: there are a small 

number of records from one survey that is a subsample from a larger survey with both gold-standard 

reports with no assumed measurement error and flawed reports with measurement error, and a 

larger number of records only with the flawed reports with measurement error. The gold standard in 

this case is a clinical report of medical status, and the flawed report is a self-report of the same 

medical status from the individual. The strong relationship between gold-standard reports and 

flawed reports in the smaller survey drive an imputation system for the larger survey that in effect 

fills in the gold-standard report for all records on the larger survey. This paradigm is not likely to be 

relevant for OSHA/SOII directly, as the presumption is that OSHA injury and illness reports will 

not be less accurate than SOII ones if they are in fact reported (the parallel between self-reports and 

clinical reports in the medical context is not really on target).  

 

The other two papers He et al. (2014) and Yucel and Zaslavsky (2005) are more likely to be relevant 

as the matched surveys in these cases are both measuring the same incidence of the same event with 

the error in both cases being from missing values: a failure to report the event. In both cases, the 

researchers make the assumption that error can be in only one direction: if there is no event, then 

neither source will report the event, but if there is an event, then one or the other source (or both 

sources) will report it. This particular paradigm is likely to be directly relevant to the OSHA/SOII 

application. Both applications rely on Bayesian modeling to tease out the correct conditional 

probability distributions, backing out mass imputations to represent the right posterior distributions 

given the source information and the specified models.  

 

 

4.3 Overall Review of Approaches  

The micro approach will provide a better result than the macro approach if the data linkage is strong 

between the surveys, as it captures more information in linking data at the individual record level. 

The macro approach completely severs the two surveys and cannot measure the information 

provided by the correlations within these linked records.  

 

The micro approach is certainly more difficult and costly to implement as it requires a careful 

combination of the two surveys. The macro approach can remain within the framework of each 

individual survey, and put together the estimates as a last step. Thus there is a cost/benefit analysis 

that is needed in deciding between micro and macro. 
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The micro approach’s cost and benefit both depend on the quality of the link. A direct deterministic 

link will be easiest to implement and will also give the best results. The quality and complexity of 

probabilistic methods depend implicitly on how effective the linking is. As the quality of the links 

goes down, the benefit of the micro approach decreases, and the cost and complexity of the 

necessary modeling increases. It seems on the surface of things that the OSHA/SOII link has a very 

good chance of being solid enough to yield strong estimates.  
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Appendix A 

Detailed Review of Papers on Calibration and 

Composite Estimation 

 
Merkouris (2004) discusses composite estimation with calibration under the framework that one has 

two independent surveys with independent control totals. In the simplest case, there are variables 𝐗𝟏 

from Survey 1 with control totals available, variables 𝐗𝟐 from Survey 2 with control totals available, 

and a single variable Z which is present on both surveys for which the best estimator is desired. 

Merkouris presents a composite estimator of the single variable Z as follows (equation (8) in his 

paper): 

 

�̂�𝑠
𝐶𝑅 = 𝜑�̂�1 + (1 − 𝜑)�̂�2 + �̂�𝟏[𝜑(𝐭𝐱𝟏

− �̂�𝟏)] + �̂�𝟐[(1 − 𝜑)(𝐭𝐱𝟐
− �̂�𝟐)] 

 

where �̂�1 and �̂�2 are the simple Horvitz-Thompson estimators of Z from Surveys 1 and 2 

respectively, �̂�1 and �̂�2 are regressions of Z on 𝐗𝟏 and Z on 𝐗𝟐 within the two surveys respectively, 

𝐭𝐱𝟏
 and 𝐭𝐱𝟐

 are control totals for 𝐗𝟏 and 𝐗𝟐 respectively, �̂�𝟏 and �̂�𝟐 are the Horvitz-Thompson 

estimators for 𝐗𝟏 and 𝐗𝟐 respectively, and 𝜑 is a compositing factor as follows: 

 

𝜑 =
�̃�1

�̃�1 + �̃�2
 

 

�̃�1 and �̃�2 are effective sample sizes for Z from surveys 1 and 2 respectively. Essentially we are 

compositing two calibrated estimators of Z with calibration based on possibly differing sets of 

auxiliary vectors 𝐗𝟏 and 𝐗𝟐, which we assume are both unbiased (or their biases if any are corrected 

by the calibrations on 𝐗𝟏 and 𝐗𝟐), and the compositing factor is based on a proxy for relative 

variances.  

 

Merkouris (2004) then generalizes this to a 𝑞-vector 𝒁 of common survey variables and generalizes 

𝜑 to a 𝑞 x 𝑞 matrix Φ, with composite estimator then  

 

�̂�𝑠
𝐶𝑅 =   Φ�̂�1

𝑅 + (I𝑞 − Φ)�̂�2
𝑅    = 

                                                 =    �̂�1
𝑅 + (I𝑞 − Φ)(�̂�2

𝑅 − �̂�1
𝑅)  

                                           =      �̂�2
𝑅 + Φ(�̂�1

𝑅 − �̂�2
𝑅) 
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with I𝑞 the 𝑞 x 𝑞 identity matrix, �̂�1
𝑅 the calibrated estimator of 𝒁 from survey 1 (including the 

calibration to 𝐭𝐱𝟏
control totals) and �̂�2

𝑅 the calibrated estimator of 𝒁 from Survey 2 (including the 

calibration to 𝐭𝐱𝟐
 control totals). Note that the composite estimator can be rewritten in the form of 

�̂�1
𝑅 with a calibration to �̂�2

𝑅 (as if it is auxiliary information), or as �̂�2
𝑅 to �̂�1

𝑅 (as if it is auxiliary 

information). Another way of formulating this is that we have three control constraints on the final 

weights: the weights for Survey 1 have to guarantee that the final weighted estimator of 𝐗𝟏 are 

exactly equal to the control totals 𝐭𝐱𝟏
, the final weights for Survey 2 have to guarantee that the final 

weighted estimator of 𝐗𝟐 is exactly equal to the control totals 𝐭𝐱𝟐
, and the weights for the combined 

survey for the common variables 𝒁 have to force equality between the Survey 1 final estimator of 𝒁 

and the Survey 2 final estimator of 𝒁. Merkouris (2004) points out as an example the work at BLS 

on the Consumer Expenditure Survey (CES) as given in Zieschang (1990), where the two surveys 

were the Diary and Interview components of the CES.  

 

Merkouris (2010) then extends this work to domain estimation. Merkouris (2010) presents three 

different estimators for a common set of variables 𝒁 between two surveys with control totals 𝐗𝟏 and 

𝐗𝟐 as in Merkouris (2004), with the estimation restricted to possibly small domain 𝑑. The first 

estimator calibrates to 𝐭𝐱𝟏
 and 𝐭𝐱𝟐

, and composites the 𝒁 domain estimates (effectively equating the 

Survey 1 and Survey 2 estimates within the domain 𝑑). The second estimator calibrates to 𝐭𝐱𝟏𝐝
 and 

𝐭𝐱𝟐𝐝
: separate domain-𝑑 control totals for 𝐗𝟏 and 𝐗𝟐, also compositing the Z domain estimates 

(again effectively equating the Survey 1 and Survey 2 estimates within the domain 𝑑). This second 

estimator requires the existence of domain-level auxiliary information 𝐭𝐱𝟏𝐝
 and 𝐭𝐱𝟐𝐝

: this may or may 

not be available. If it is available and is of sufficient quality, Merkouris (2010) showed that the 

second estimator will have higher precision than the first estimator (under certain conditions), as one 

might expect. The third estimator is similar to the first in that it calibrates to 𝐭𝐱𝟏
 and 𝐭𝐱𝟐

, at the full-

population level only, and composites the 𝒁 domain estimates, but also adds as a control the domain 

population sizes. This third estimator should perform better than the first, but not as well as the 

second in general. 
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Appendix B 

Detailed Review of Papers on Multiple Frame Methods 

 
Lohr (2011) presents a synopsis of the literature on multiple frame methods going back to Hartley 

(1962). These methods allow for more than two frames, but the OSHA/SOII context is dual frame, 

so this literature review presentation will be restricted to that. The dual frame estimator of a 

population total 𝑌 using notation from Lohr is: 

 

�̂�(𝜃)   =   �̂�𝑎
𝐴   +   𝜃 ∗ �̂�𝑎𝑏

𝐴   +   (1 − 𝜃) ∗ �̂�𝑎𝑏
𝐵   +   �̂�𝑏

𝐵 

 

The superscripts 𝐴 and 𝐵 refer to the two frames which together cover the full population. The 

subscripts 𝑎, 𝑏, and 𝑎𝑏 represent the parts of the population covered by Frame 𝐴 only, Frame 𝐵 

only, and the part of the population covered by both frames, respectively. The parameter 𝜃 

combines the estimators for population 𝑎𝑏 derived from Frame 𝐴 and Frame 𝐵 respectively.  

 

Most of the literature on dual frame surveys developed from the original Hartley (1962) paper 

assumes that both population totals �̂�𝑎𝑏
𝐴  and �̂�𝑎𝑏

𝐵  are unbiased, so that whatever the choice of 𝜃, the 

final estimator �̂�(𝜃) will be unbiased. 𝜃 can be selected in order to minimize the variance, or with 

other issues in mind. The OSHA/SOII application cannot make that assumption. Our interest is in 

an approach that assumes one or both of �̂�𝑎𝑏
𝐴  and �̂�𝑎𝑏

𝐵  are biased.  

 

Brick et al. (2011) discusses this in the context of combining landline and cellphone telephone 

samples. The source of potential bias is differential response rates. Lohr and Brick (2014) provide a 

theory of optimal sample design allocation. Lohr and Brick assign sample sizes to the two frames 

based on unit variances, unit costs (screener and extended interview), and response rate differentials. 

This is a useful framework for deciding on sample sizes.  

 

 

B.1 Combining Cellphone and Landline Frames 

The Brick et al. (2011) paper covers the important application of combining household-level 

samples from landline telephone frames and cellphone telephone frames. The landline-only and 

cellphone-only portions of this household universe are straightforwardly dealt with through standard 

methods, and the issue for research is the large subpopulation of households who have both landline 

and cellphone telephones.  
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Brick et al. (2011) provide a multiple-frames type estimator of the overlap population 𝑎𝑏: 

 

�̂�𝑝𝑠,𝑎𝑏    =    𝜆
𝑁𝑎𝑏

�̂�𝑎𝑏
𝐴

�̂�𝑎𝑏
𝐴   +    (1 − 𝜆)

𝑁𝑎𝑏

�̂�𝑎𝑏
𝐵

�̂�𝑎𝑏
𝐵  

 

where 𝑁𝑎𝑏 is the population count for the overlap landline-cellphone household population, �̂�𝑎𝑏
𝐴  is 

the estimator of this count from Frame A (landline), �̂�𝑎𝑏
𝐵  is the estimator of this count from Frame 

B (cellphone), �̂�𝑎𝑏
𝐴  is the estimator from Frame A, and �̂�𝑎𝑏

𝐵  is the estimator from Frame B, and 𝜆 is a 

parameter between 0 and 1 to be determined.  

 

The primary issue here is that each of �̂�𝑎𝑏
𝐴  and �̂�𝑎𝑏

𝐵  suffer from nonresponse bias. Brick et al. (2011) 

focus on one important aspect of this. The overlap population can be divided into a ‘landline-

mainly’ and a ‘cellphone-mainly’ group, based on the household’s usage of their telephones. The 

landline-mainly group can be expected to have a low cellphone response rate, and the cellphone-

mainly group can be expected to have a low landline response rate. �̂�𝑎𝑏
𝐴  then can be expected to 

have a high landline-mainly subgroup response rate and a low cellphone-mainly subgroup response 

rate underlying it, leading to a bias favoring the landline-mainly portion of this landline-frame 

sample. �̂�𝑎𝑏
𝐵  then can be expected to have a low landline-mainly subgroup response rate and a high 

cellphone-mainly subgroup response rate underlying it, leading to a bias favoring the cellphone-

mainly portion of this landline-frame sample.  

 

The bias in �̂�𝑝𝑠,𝑎𝑏 can be written as a function of the difference in the land-mainly and cell-mainly 

population means (within the overlap population), and the response rates mentioned above. A 

judicious selection of 𝜆 as a function of these response rates can offset and eliminate this bias. 

Another more straightforward approach is to divide the overlap population further into landline-

mainly and cellphone-mainly components. With appropriate control totals utilized from the National 

Health Interview Survey, an unbiased poststratified version can be computed: 

 

�̂�𝑠𝑒𝑝,𝑎𝑏    =    𝜆1

𝑁𝑚𝑙

�̂�𝑚𝑙
𝐴

�̂�𝑎𝑏
𝐴 (𝑚𝑙)  +   (1 − 𝜆1)

𝑁𝑚𝑙

�̂�𝑚𝑙
𝐵

�̂�𝑎𝑏
𝐵 (𝑚𝑙)     +    

 

                                                 𝜆2
𝑁𝑚𝑐

�̂�𝑚𝑐
𝐴 �̂�𝑎𝑏

𝐴 (𝑚𝑐)  +   (1 − 𝜆2)
𝑁𝑚𝑐

�̂�𝑚𝑐
𝐵 �̂�𝑎𝑏

𝐵 (𝑚𝑐) 

 

where 𝑁𝑚𝑙 (𝑁𝑚𝑐) is the population count for the mainly-landline (mainly-cellphone) household 

population, �̂�𝑚𝑙
𝐴  (�̂�𝑚𝑐

𝐴 ) are the estimators of these counts from Frame A (landline), �̂�𝑚𝑙
𝐵  (�̂�𝑚𝑐

𝐵 ) are 

the estimators of these counts from Frame B (cellphone), �̂�𝑎𝑏
𝐴 (𝑚𝑙) (�̂�𝑎𝑏

𝐴 (𝑚𝑐)) is the estimator for 
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the mainly-landline (mainly-cellphone) household population from Frame A,  �̂�𝑎𝑏
𝐵 (𝑚𝑙) 

(�̂�𝑎𝑏
𝐵 (𝑚𝑐)) is the estimator for the mainly-landline (mainly-cellphone) household population from 

Frame B, and 𝜆 is a parameter between 0 and 1 to be determined.  

 

The parameters 𝜆1 and 𝜆2 can again be chosen freely without causing bias, allowing for their 

selection by efficiency considerations. As the sample sizes underlying �̂�𝑎𝑏
𝐴 (𝑚𝑙) may be larger than 

those underlying �̂�𝑎𝑏
𝐵 (𝑚𝑙) (for the landline-mainly group, one would expect a lot more contacts 

from the landline sample), a 𝜆1 closer to 1 will likely be more efficient. Likewise, as the sample sizes 

underlying �̂�𝑎𝑏
𝐴 (𝑚𝑐) may be smaller than that underlying �̂�𝑎𝑏

𝐵 (𝑚𝑙) (for the cellphone-mainly group, 

one would expect a lot more contacts from the cellphone sample), a 𝜆2 closer to 0 will likely be 

more efficient. 

 

 

B.2 National Crime Victimization Survey  

A scenario quite close to that of the OSHA/SOII issue is the context of the Bureau of Justice 

Statistics’ (BJS) National Crime Victimization Survey (NCVS). The NCVS is an expensive national 

longitudinal study that starts from a nationally representative sample of households. The sampled 

households are then tracked and re-interviewed twice a year for a total of seven interviews. The first 

interview is in-person: the follow-up interviews by telephone. BJS is studying the possible use of a 

Companion Survey (CS) to improve estimation from the NCVS in small domains. This CS will be an 

Address-based sampling (ABS) approach, with mail and telephone data collection aspects. There will 

be only one interview (no follow-up).  

 

The differences in mode between the main NCVS and CS will make combining the two parts of the 

study very challenging (as with SOII and OSHA). Major mode differences include significant data 

collection differences, and the recall period for the primary questions about victimization. NCVS 

asks about six-month periods between longitudinal interviews, and the CS will ask about a twelve-

month period preceding the single interview. The NCVS is viewed as unbiased in this context, with 

the CS as suffering biases from the mode differences with NCVS.  

 

Lohr and Brick (2012) present a multiple frames type methodology for the NCVS/CS merging. 

Their model is a random effects type model, non-Bayesian. Suppose �̅�𝑑 is the mean for domain 𝑑 

from NCVS, and �̅�𝑑 is the mean for domain 𝑑 from CS. Then we assume: 
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(
�̅�𝑑

�̅�𝑑
)~𝑁 [(

𝜃𝑑

𝜃𝑑+ 𝜂𝑑
) , 𝜎2 (

𝑛𝑦𝑑
−1 0

0 𝑛𝑥𝑑
−1

)] 

 

The random effects parameter 𝜃𝑑 is assumed to be the actual population value, i.e., the NCVS 

estimator is assumed to be unbiased. The random effects parameter 𝜂𝑑 then measures the bias in 

CS. 𝑛𝑦𝑑 and 𝑛𝑥𝑑 are effective sample sizes for domain 𝑑 for NCVS and CS respectively. The 

distribution of random effects is  

 

(
𝜃𝑑

𝜂𝑑
)~𝑁 [(

𝜇1

𝜇2
) , (

𝑎 𝑏
𝑏 𝑐

)
−1

] 

 

𝜇1 is the overall population mean, and 𝜇2 the overall population bias (of the CS estimates). The 

parameter 𝑎 measures the degree of variability across domains in the population mean, and the 

parameter 𝑐 measures the degree of variability across domains in the bias levels (small values of the 

parameters here correspond to large variability: they are precision parameters). Lohr and Brick 

(2012) chose to estimate the parameters 𝜇1, 𝜇2, 𝑎, 𝑏, 𝑐 through maximum likelihood. 𝜎2 is treated 

as a fixed value and derived from design-based type calculations similar to Fay and Herriot (1979). 

There is also a version of these calculations with 𝑏 assumed to be 0.  

 

The estimates of 𝜃𝑑 and 𝜂𝑑 can be computed in an Empirical Bayes type calculation based on the 

maximum likelihood estimates of the parameters and expressions for the conditional distributions of 

𝜃𝑑 and 𝜂𝑑 given �̅�𝑑 and �̅�𝑑 . The estimate for 𝜂𝑑 (bias of CS for a particular domain) is a linear 

combination of the ‘raw’ estimator �̅�𝑑 − �̅�𝑑 , the partially shrunken estimator �̅�𝑑 − �̂�1 and the fully 

shrunken estimator �̂�2.  

 

Lohr and Brick (2012) also recommend more direct estimators based on linear combinations of �̅�𝑑 , 

�̅�𝑑 , linear combinations of �̅�𝑑 and �̅�𝑑 − �̂�2, and linear combinations of �̅�𝑑 and �̅�𝑑 − �̂�𝑑, with linear 

weights suggested from the model described above. Also an estimator based on assuming a 

multiplicative bias was developed, as well as estimators based on calibrating the CS estimator to 

NCVS estimators. These estimators were studied for various population scenarios through a 

simulation study.  

 

It should be noted that DoJ did not follow through on the Companion Survey, after pilot studies 

were done. There is no followup then to the Lohr and Brick (2012) work, and NCVS continues as 

the one and only DoJ survey for crime victimization (as of 2017).  
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Appendix C 

Detailed Review of Papers on Small-Area Area-Level 

Estimation 

 
C.1 NHIS and BRFSS: Reweighting Approach  

For Elliot and Davis (2005) the estimates of interest are cancer risk factor prevalences (such as 

smoking and mammogram prevalences), and the small areas are counties. NHIS has excellent 

national estimates of these prevalences (with high relative response rates and full coverage), but is 

not designed to provide county-level estimates. Sample sizes are small and there are restrictions on 

geographic data disclosure at the county (or even state) level2. The Behavior Risk Factors 

Surveillance System (BRFSS) provides much larger sample sizes at the state and county levels, but 

suffers from known bias from a much lower response rate and coverage restricted to landline 

telephone households.  

 

The solution of Elliot and Davis (2005) rests on the observation that the biases inherent in BRFSS 

mostly come about from a distortion in the represented population arising from the low response 

rates and the undercoverage of cellphone-only and non-telephone households. The BRFSS sample is 

the basis for the county-level prevalence estimates, but NHIS is utilized to adjust the BRFSS 

samples but calibrating the BRFSS weights to NHIS, but not in the usual way of raking to control 

totals.  

 

The approach is to put the records from the two surveys together (without any matching which is 

not possible). Write 𝑆𝑖 = {𝑎, 𝑏} as the indicator of whether the household is in NHIS (survey 𝑎) or 

BRFSS (survey 𝑏). Write 𝑦𝑖 as the value of a prevalence indicator of household 𝑖, write 𝐱𝐢 as a set of 

covariates shared by both NHIS and BRFSS related to 𝑦𝑖, write 𝐺𝑖 = 𝑔 as an indicator for 

household 𝑖 being in small-area 𝑔, 𝐴𝑖 = 𝑟 an indicator for household 𝑖 being in region 𝑟 (with 

region 𝑟 identified and disclosed for both surveys: Census region would be the right level for NHIS), 

and 𝑑𝑖 a final weight from BRFSS.  

 

The Elliot and Davis (2005) concept is designed to adjust 𝑑𝑖 by the ratio 

 

                                                 

2 The public-use NHIS data set only has geographic information at the Census Region level crossed with seven urban-rural categories.  
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𝑓(𝑌𝑖, 𝐗𝐢 = 𝐱𝐢|𝑆𝑖 = 𝑎, 𝐺𝑖 = 𝑔)

𝑓(𝑌𝑖, 𝐗𝐢 = 𝐱𝐢|𝑆𝑖 = 𝑏, 𝐺𝑖 = 𝑔)
  

 

with 𝑓( ) a PDF. This is designed to ‘fix’ the distorted probability distribution inherent in BRFSS 

and bring it into alignment with NHIS. Using Bayes rule this can be rewritten as: 

 
𝑓(𝑌𝑖, 𝐗𝐢 = 𝐱𝐢|𝑆𝑖 = 𝑎, 𝐺𝑖 = 𝑔)

𝑓(𝑌𝑖, 𝐗𝐢 = 𝐱𝐢|𝑆𝑖 = 𝑏, 𝐺𝑖 = 𝑔)
  =     

𝑓(𝑆𝑖 = 𝑎|𝑌𝑖, 𝐗𝐢 = 𝐱𝐢, 𝐺𝑖 = 𝑔) 𝑓(𝑆𝑖 = 𝑎|𝐺𝑖 = 𝑔)⁄

𝑓(𝑆𝑖 = 𝑏|𝑌𝑖, 𝐗𝐢 = 𝐱𝐢, 𝐺𝑖 = 𝑔) 𝑓(𝑆𝑖 = 𝑏|𝐺𝑖 = 𝑔)⁄
 

 

But this ratio cannot be computed as we do not have 𝐺𝑖 = 𝑔 information for NHIS, so Elliott and 

Davis (2005) assume that 𝐺𝑖 = 𝑔 can be replaced by 𝐴𝑖 = 𝑟 (assuming certain conditional 

probabilities are equal across small areas), resulting in their NHIS-adjusted BRFSS weight being as 

follows: 

 

𝑤𝑖 = 𝑑𝑖

𝑓(𝑆𝑖 = 𝑎|𝑌𝑖, 𝐗𝐢 = 𝐱𝐢, 𝐴𝑖 = 𝑟) 𝑓(𝑆𝑖 = 𝑎|𝐴𝑖 = 𝑟)⁄

𝑓(𝑆𝑖 = 𝑏|𝑌𝑖, 𝐗𝐢 = 𝐱𝐢, 𝐴𝑖 = 𝑟) 𝑓(𝑆𝑖 = 𝑏|𝐴𝑖 = 𝑟)⁄
 

 

The analysis of Elliott and Davis (2005) demonstrates to their satisfaction (using other sources of 

information such as the Current Population Survey Tobacco Use Supplement for smoking 

prevalence) that using the NHIS-adjusted BRFSS weights as compared to the original BRFSS 

weights adjust for the biases in the prevalence estimates from the original BRFSS. However, the 

weights tend to be sometimes highly variable, leading to higher variances. Elliott and Davis 

developed a hybrid estimator which estimates mean squared error and then finds the best linear 

combination of original-BRFSS and NHIS-adjusted BRFSS estimator to minimize overall mean-

squared error. 

 

 

C.2 NHIS and BRFSS: Small-Area Estimation Approach  

Raghunathan et al. (2007) continue research on using NHIS to adjust BRFSS county-level estimates 

of cancer-risk prevalence. In their approach, they gain full access to county-level data from NHIS, 

allowing for considerable improvement over the information base available to Elliott and Davis 

(2005), who only had access to the public-use version of NHIS with its highly restricted geographic-

level information. They use as a starting point the vector of direct estimates (using NHIS and 

BRFSS final weights) (𝑝𝑥𝑗𝑡 𝑝𝑦𝑗𝑡 𝑝𝑧𝑗𝑡)′ where 𝑝𝑥𝑗𝑡 is the direct estimate of prevalence among 

NHIS telephone households in county 𝑗, year 𝑡, 𝑝𝑦𝑗𝑡 is the direct estimate of prevalence among 
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NHIS non-telephone households in county 𝑗, year 𝑡, and 𝑝𝑧𝑗𝑡 is the direct estimate of prevalence 

among BRFSS households in county 𝑗, year 𝑡. Note that all BRFSS households are telephone 

households. Raghunathan et al. found considerable differences between 𝑝𝑥𝑗𝑡 and 𝑝𝑦𝑗𝑡 in general for 

smoking prevalence and mammogram usage prevalence: non-telephone households appear to be 

considerably different from telephone households in the prevalence of these risk factors. On the 

other hand, there were not drastic differences between 𝑝𝑥𝑗𝑡 and 𝑝𝑧𝑗𝑡 (NHIS telephone households 

and BRFSS telephone households). For these prevalence items at least, BRFSS lack of coverage of 

non-telephone households is a much bigger generator of bias than BRFSS non-response (assuming 

NHIS is a fully unbiased benchmark).  

 

Raghunathan et al. (2007) proceed to adjust BRFSS direct estimates 𝑝𝑧𝑗𝑡 by utilizing the following 

Bayesian small-area estimation model: 

 

(

𝑥𝑗𝑡

𝑦𝑗𝑡

𝑧𝑗𝑡
) = (

arcsin√𝑝𝑥𝑗𝑡

arcsin√𝑝𝑦𝑗𝑡

arcsin√𝑝𝑧𝑗𝑡

)~ 

~𝑁3

[
 
 
 
 
 

(

𝜃𝑗𝑡

𝜑𝑗𝑡

(1 + 𝛿𝑗𝑡)𝜃𝑗𝑡

) ,
1

4

[
 
 
 
 �̃�𝑥𝑗𝑡

−1 𝜌𝑡(�̃�𝑥𝑗𝑡�̃�𝑦𝑗𝑡)
−

1
2 0

𝜌𝑡(�̃�𝑥𝑗𝑡�̃�𝑦𝑗𝑡)
−

1
2 �̃�𝑦𝑗𝑡

−1 0

0 0 �̃�𝑧𝑗𝑡
−1

]
 
 
 
 

]
 
 
 
 
 

 

  

with �̃�𝑥𝑗𝑡 (�̃�𝑦𝑗𝑡 , �̃�𝑧𝑗𝑡) being effective sample sizes (taking into account design effects from the 

sample design, weights, etc.) for the three estimates (𝑝𝑥𝑗𝑡, 𝑝𝑦𝑗𝑡, 𝑝𝑧𝑗𝑡) respectively. The original 

percentages are transformed using the traditional arcsin-square root variance stabilizing 

transformation. Important parameters in the model are 𝜃𝑗𝑡—the true (transformed) telephone 

household prevalence in county 𝑗, time 𝑡;  𝜑𝑗𝑡—the true (transformed) non-telephone household 

prevalence in county 𝑗, time 𝑡; 𝛿𝑗𝑡—the bias term in the BRFSS telephone household prevalence; 

and, 𝜌𝑡—a correlation within NHIS between telephone and non-telephone household prevalences, 

assumed constant over counties.  

 

There is a further hierarchical model for the three parameters (𝜃𝑗𝑡 , 𝜑𝑗𝑡, 𝛿𝑗𝑡) as follows: 

 

(

𝜃𝑗𝑡

𝜑𝑗𝑡

𝛿𝑗𝑡

)~𝑁3(𝛃𝐔𝑗𝑡 , 𝚺) 
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𝐔𝑗𝑡 is a vector of county-level covariates designed to explain the county-level variation in these 

parameters. These county level characteristics include county percentages by race, education, 

poverty, employment, social services, and other estimates of economic-related characteristics of the 

county. There are further noninformative priors for 𝛃 and 𝚺.  

 

The Raghunathan et al. (2007) model is a true small-area estimation model in that there are design-

based estimates of the variance built in to the model that are treated as fixed values. The inherent 

biases between NHIS and BRFSS at the county level as represented in the vector (𝜃𝑗𝑡 , 𝜑𝑗𝑡 , 𝛿𝑗𝑡) 

are carefully disentangled using county-level sociodemographic and economic information.  

 

 

C.3 Kim, Park, and Kim: Small-Area Estimation Combining 

Surveys with Fixed Bias 

Kim et al. (2015) provide basic small-area estimation theory combining two surveys. This theory is 

primarily motivated by combining two sources for employment information in South Korea: The 

Korean Labor Force (KLF) survey and the Local Area Labor Force Survey (LALF). The KLF 

survey has about 7,000 households with no measurement error (the gold standard), and the LALF 

has about 200,000 households with measurement error from its rougher field collection. The KLF is 

a second-phase sample from the LALF, and they generate small-area estimates for 227 small areas 

(called ‘Gu’) within South Korea.  

 

Their basic model can be summarized as follows: 

 

(
�̅�1ℎ

�̅�ℎ
) = (

𝛽0 𝛽1

0 1
) (

1
�̅�ℎ

) + (
𝑏ℎ + �̅�1ℎ

𝑎ℎ
) 

 

with �̅�𝒉 the target population mean in small-area 𝒉, �̅�𝒉 the estimate from the gold standard survey, 

�̅�𝟏𝒉 the estimate from the large survey with measurement error, 𝜷𝟎 and 𝜷𝟏 coefficients relating �̅�𝟏𝒉 

to �̅�𝒉, and 𝒂𝒉, 𝒃𝒉, �̅�𝟏𝒉 variance components. Assuming parameters are known the final Empirical 

Bayes type shrinkage estimator is  

 

�̂̅�𝒉 = 𝜶𝒉�̅�𝒉 + (𝟏 − 𝜶𝒉)𝜷𝟏
−𝟏(�̅�𝟏𝒉 − 𝜷𝟎) 
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with 𝜶𝒉 generated based on the relative precision of the small-sample gold-standard estimator, and 

the large-sample estimator adjusted for bias. Parameters are estimated using maximum likelihood: 

the approach is non-Bayesian. 

 

The estimation approach is well-developed. Kim et al. (2015) apply it to the Korean labor force 

surveys, but assume in that application that 𝛽0 is equal to 0. The deficiency in the Kim et al. 

approach from the standpoint of the OSHA/SOII application is that the bias is assumed to be equal 

across all small areas. If this assumption is judged to be satisfactory, then the Kim et al. approach is 

definitely a possibility.  

 

 

C.4 Small-Area Estimation Theory: General 

Ybarra and Lohr (2008) present a theoretical development under the classical non-Bayesian small-

area estimation framework. They work with the Fay-Herriot model 

 

𝑦𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑣𝑖 + 𝑒𝑖    [

𝑣𝑖

𝑒𝑖 
] ~𝑁2 [

𝜎𝑣
2 0

0 𝜓𝑖
]     

 

𝜓𝑖  is a design-based variance. 𝑦𝑖 is an unbiased estimator of 𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑣𝑖 . If all the parameters are 

known, the traditional Fay-Herriot predictor for 𝑌𝑖 is  

 

�̂�𝑖𝐹𝐻 = 𝛾𝑖𝑣𝑦𝑖 + (1 − 𝛾𝑖𝑣)𝑋𝑖
𝑇�̂� 

 

with 𝛾𝑖𝑣 = �̂�𝑣
2 (�̂�𝑣

2 + 𝜓𝑖)⁄ , and �̂�, �̂�𝑣
2 are estimators of 𝛽, 𝜎𝑣

2 respectively.  

 

Ybarra and Lohr (2008) allow for 𝑋𝑖 to be measured with error: potentially both bias and variance. 

Write MSE (�̂�𝑖) as a matrix 𝐶𝑖 . If 𝛽
𝑇𝐶𝑖𝛽 > 𝜎𝑣

2 + 𝜓𝑖 , then the Fay-Herriot predictor will have higher 

MSE than the simple direct estimator 𝑦𝑖. As 𝑋𝑖 in many cases is coming itself from an estimate 

which may have the same level of error as 𝑦𝑖, this should be a concern.  

 

Their alternative estimator under these conditions is as follows: 

 

�̂�𝑖𝐹𝐻 = 𝛾𝑖𝑦𝑖 + (1 − 𝛾𝑖)�̂�𝑖
𝑇�̂�𝑤 
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with 𝛾𝑖 =
�̂�𝑣

2(𝑤)+�̂�𝑤
𝑇𝐶𝑖�̂�𝑤

�̂�𝑣
2(𝑤)+�̂�𝑤

𝑇𝐶𝑖�̂�𝑤+𝜓𝑖
 and �̂�𝑣

2(𝑤) and �̂�𝑤 are consistent estimators of 𝜎𝑣
2 and 𝛽 respectively 

allowing for the extra variance in �̂�𝑖.  
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Appendix D 

Detailed Review of Papers on Hierarchical Models for 

Combining Surveys 

 
D.1 Bayesian Models at the Estimate Level: No Covariates  

Manzi et al. (2011) provides a Bayesian model for combining small area smoking prevalence 

estimates. The population estimate of interest is smoking prevalence, and the small areas are 48 

Local Areas (LAs) in Eastern England. There are seven different surveys which are providing 

estimates for these 48 Local Areas. Three of the seven estimates are from Acxiom, which are 

providing estimates from a UK National Shoppers Survey. This survey has very low response rates 

and coverage issues: the methodology for carrying out the survey is actually unpublished. One of the 

seven surveys is a commercial community insights survey on household expenditure on tobacco 

(called ‘CACI’). Three of the seven surveys are from the Health Survey for England (HSE), a major 

nationally representative survey of households (with two of the HSE surveys deriving the LA 

estimates from a small-area type model). The Acxiom surveys have large enough data sets from each 

LA, but an unknown degree of nonsampling error, and have prevalence estimates that are less than 

the others. CACI has prevalence estimates larger than the others. The HSE surveys have presumably 

much lower nonsampling error, but the sample sizes for the LAs are small and the estimates are 

based partially on small-area type models (and are also several years older).  

 

The Manzi et al. (2011) model is as follows. Let 𝑦𝑖𝑗 be the smoking prevalence in LA 𝑖 (𝑖 =

1, … ,48) and from data source 𝑗 (𝑗 = 1,… ,7), in percentage terms (𝑦𝑖𝑗 is 0 to 100). Let 𝜃𝑖 be the 

true smoking prevalence in LA 𝑖, with a uniform prior on the interval [0,100], but with the extra 

important proviso that the mean value of the 𝜃𝑖 is �̅� = 233: an estimate for smoking prevalence for 

Eastern England from the UK General Household Survey (with assumed high accuracy and low 

bias). This General Household Survey estimate is being treated as the ‘truth’ and is assumed to be a 

fixed value (an overstatement as to its accuracy: it has at least sampling error associated with it).  

 

Let 𝛿𝑖𝑗 be the bias in the prevalence estimate for LA 𝑖, data source 𝑗. The conditional joint model 

for 𝑦𝑖𝑗 and 𝛿𝑖𝑗 is  

 

                                                 

3 This is implemented by assuming a uniform prior for each 𝜃𝑖 , 𝑖 =1.,,.47, and then assuming the last LA value 𝜃48 is equal to 48*�̅� – 

∑ 𝜃𝑖
47
𝑖=1 .  
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𝑦𝑖𝑗| 𝛿𝑖𝑗~𝑁(𝜃𝑖 + 𝛿𝑖𝑗, 𝜎𝑖𝑗
2)     𝛿𝑖𝑗~𝑁(𝜇𝑗 , 𝜏𝑗

2) 

 

with 𝜎𝑖𝑗
2  the variance of the estimate 𝑖𝑗 (treated as a fixed value), 𝜇𝑗 the overall mean bias from 

source 𝑗, and 𝜏𝑗
2 the variance of the LA biases from the mean bias for source 𝑗. Noninformative 

priors are posited for the 𝜇𝑗 and 𝜏𝑗
2. Posterior distributions are generated for all of the relevant 

parameters using a Markov Chain Monte Carlo (MCMC).  

 

Manzi et al. (2011) develop a second model which allows for correlations in the 𝛿𝑖𝑗 between sources 

𝑗1 and 𝑗2 (the covariance between 𝛿𝑖𝑗1 and 𝛿𝑖𝑗2 is posited to be 𝜌𝜏𝑗1𝜏𝑗2—there is one single 

universal correlation parameter 𝜌). This wrinkle doesn’t change the final posterior means of the 𝜃𝑖 

much, but increase the posterior variance.  

 

Manzi et al. (2011) also develop a non-Bayesian version of this which omits the Bayesian priors and 

fits the model as a two-way ANOVA, doing effectively Empirical Bayes type estimates of the 

resultant 𝜃𝑖 . A second version of this fits the model as a mixed effects model: 

 

𝑦𝑖𝑗 = 𝜃𝑖 + 𝜇𝑗 + 𝛿𝑖𝑗
∗ + 휀𝑖𝑗 

 

with 𝜃𝑖 and 𝜇𝑗 as fixed effects, and 𝛿𝑖𝑗
∗ ~𝑁(0, 𝜏𝑗

2), 휀𝑖𝑗~𝑁(0, 𝜎𝑖𝑗
2), with 𝜏𝑗

2 and 𝜎𝑖𝑗
2  also as fixed 

parameters, and imposing the constraint that �̅� should be equal to 23 (the GHS estimate). The fixed 

parameters can be estimated using maximum likelihood for example, and Empirical Bayes methods 

utilized to provide BLU predictors of 𝛿𝑖𝑗
∗  for example. It should be noted that this non-Bayesian 

version of the model is very close to the model from Lohr and Brick (2012), with the only major 

difference that in Lohr and Brick one of the sources is assumed to be unbiased (i.e., one source is 

assumed to have a 𝜇𝑗 equal to 0).  

 

Both the Manzi et al. (2011) model and the Lohr and Brick (2012) model essentially estimate overall 

bias simply by studying differences between the source means. If the overall sample sizes are large 

enough this may be reasonable. Of course comparing the source means only allows one to measure 

relative biases (differences in expectations). To get to absolute biases, one must either as in Lohr and 

Brick assume up front that one source is unbiased, or as in Manzi et al. one must have an 

independent, high-precision estimate of the overall mean (their �̅� equal to 23).  

 

Then, for domains, the idea is that the domain biases are all fairly close to the overall bias: whatever 

the source of bias is in a source, it does not differ systematically across domains. This crucial 
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assumption is what makes it possible to get a handle on the domain-level biases in the context of 

small sample sizes in the domains.  

 

 

D.2 Bayesian Models at the Estimate Level: Corn Yields from 

the National Agricultural Statistical Services. 

Wang et al. (2011) work with three separate estimates of corn yield from NASS as follows: 

 
 OYS: Objective Yield Survey. This is based on a sample of acres with corn yield in June 

of the year, for five months August through December, in high corn-producing states; 

 AYS: Annual Yield Survey. This is based on farm interviews conducted monthly for 
four months August through November in every state (from a list of producers 
screened in June as having planted corn); 

 DAS: December Annual Survey. Interviews conducted of farmers in December at the 
end of the season across all corn farmers: large sample, and across all states.  

The DAS is accepted by NASS as being relatively unbiased, and is assumed in models as being 

unbiased4. A fully Bayesian approach is used to bring these three estimators together, using the 

following model: 

 

[true yield, Θ𝑑 , Θ𝑝|OYS, AYS, DAS]   ∝ 

∝    [OYS|true yield, Θ𝑑]   [AYS|true yield, Θ𝑑]  [DYS|true yield, Θ𝑑] [true yield|Θ𝑝] [Θ𝑝] [Θ𝑑]  

 

with Θ𝑑 , Θ𝑝 parameters for the data model and the process model respectively.  

 

The data models [OYS|true yield, Θ𝑑] and [AYS|true yield, Θ𝑑] assume arbitrary monthly biases 

for both surveys, but allow for an autocorrelation model across the months to pool the monthly 

estimates. The model [DYS|true yield, Θ𝑑] assumes DAS has as its expectation the true yield. These 

data models alone will not be enough to do anything more than make the final estimates rest 

primarily on DYS (with OYS and AYS simply estimating their respective biases), but there is also a 

substantive process model [true yield|Θ𝑝] which models the true yield as a linear function of 

                                                 

4 Nandram et al. (2014) indicate that OYS may be biased due to technical reasons regarding the way that the corn crops are measured. AYS may be 

biased because the large producers who may have differing yield patterns are left off of the AYS frame to control burden (they participate in many 

NASS surveys).  
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exogenous variables such as July rain and temperatures, and corn planted by mid-May. Priors on the 

parameters are non-informative.  

 

Nandram et al. (2014) provide further development of these models for this application for state-

level estimates. In this paper, they explore the issue of constraining the state-level to overall 

estimates. One traditional approach to this is through calibration: calibrating the state-level estimates 

for overall national estimates directly. Nandram et al. do this benchmarking through a Bayesian 

approach instead. The assigned models for the state-level estimates have built into them the 

constraint that they add to national estimates. The national estimates themselves are brought in 

using a prior distribution that is concentrated on the realized value. This is somewhat ad hoc, but it 

works practically.   
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Appendix E 

Detailed Review of Papers on Data Linkage 

 
E.1 Data Linkage: Traditional Methods and Mixture Models 

Christen (2012) provides a useful summary of data matching in a general context. His Sections 3 and 

4 describe current methodologies for blocking and indexing: necessary procedures for dividing up 

data sets into digestible blocks (or reasonable sort orders) so that too many pairs do not need to be 

compared. Section 5 describes current methods for actually evaluating similarity of strings (names in 

particular). Section 6.3 presents probabilistic classification for deciding on whether or not two 

candidate records should be linked based on their similarity evaluation. A basic ratio of conditional 

probabilities as given from the original Fellegi and Sunter (1969) paper is as follows: 

 

𝑅 =
𝑃(𝛾 ∈ Γ | 𝑟 ∈ 𝑀)

𝑃(𝛾 ∈ Γ | 𝑟 ∈ 𝑈)
 

 

where 𝛾 is an agreement pattern based on the pooled comparison variables among the universe of 

all possible such patterns Γ, 𝑟 is a candidate pair of records, 𝑀 is the set of all record pairs 

corresponding to true matches (one single individual in the population), and 𝑈 is the set of all record 

pairs not corresponding to true matches. The remainder of Section 6 explores alternatives to this 

basic Fellegi and Sunter approach. Section 7 provides an overview of methods for evaluating quality 

and complexity. Section 10 provides an inventory of currently available data matching systems.  

 

Bohensky et al. (2010) study 33 studies which carry out data linkage with evaluation of the 

differences between linked and unlinked records (among a larger set of 612 studies who did data 

linkage), in the medical research literature. They found a large percentage of studies that found some 

imbalance in linkage rates by gender, age, race, socioeconomic status and health status.  

 

Winglee et al. (2005) provide a case study of a traditional Fellegi-Sunter type approach from the 

Medical Expenditures Panel Study (MEPS). The linkage is between the annual MEPS medical event 

files from 1996, 1997, and 1998. Each annual set consists of a household file with self-reports of 

medical events from the household members, and a parallel file from the medical provider of these 

same events. Linking is done between these files using event dates and duration (hospital stay 

length), and medical condition and procedure codes. The MEPS application uses the standard 

Fellegi-Sunter approach to assign cases, assuming independence of the matching indicator vector. A 
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weight is generated which expresses the degree of matching of potential match pairs. The critical 

issue is to set cutoffs 𝑋 for matching weights 𝑥𝑖 deciding whether to designate a pair 𝑖 as matched. 

Any selected cutpoint generates a certain percentage of false positives and false negatives, and 

deciding on this tradeoff is the subject of the Winglee et al. work. They apply a ‘gold-standard’ 

method of working with pairs assigned by experienced field-collection personnel. They also apply an 

approach from Belin and Rubin (1995), as well as a simulation approach.  

 

Under the Belin and Rubin approach, the weights 𝑥𝑖 that are assigned to pairs to represent the 

degree of matching are studied as a mixture distribution conditional on whether the pair represents a 

true match (𝑧𝑖=1), or not (𝑧𝑖=0). The conditional distributions for 𝑥𝑖 given 𝑧𝑖 may be quite 

different. With the two component distributions comprising the mixture distribution are fully 

parameterized and fit based on the gold-standard training data, this mixture model can then be 

inverted to provide conditional distributions for 𝑧𝑖 given 𝑥𝑖 , and provide cutoffs for 𝑥𝑖 as to 

assigning pairs for new files (the mixture distribution allows a computation of expected false positive 

and false negative rates based on setting different potential cutoffs based on 𝑥𝑖 (assign 𝑧𝑖=1 if 𝑥𝑖 >

𝑋 , assign 𝑧𝑖=0  if 𝑥𝑖 ≤ 𝑋).  

 

Winglee et al. carry through an analysis along these lines then on the MEPS data, generating weights 

𝑥𝑖 based on a training sample (weights assigned by the linkage program on a set of true matches 

𝑧𝑖=1 and true non-matches 𝑧𝑖=0 assigned through manual review by knowledgeable data managers).  

 

Winglee et al. utilize a third approach for setting the cutoffs in a rational way. In this approach,  

Monte Carlo samples are generated from a theoretical distribution and sample distributions are then 

examined, measuring then the variability in the false positive and false negative rates resulting from 

differing cutoff values. This third approach is the least accurate, but it is the least expensive. 

Generating training data sets through manual checking by data managers, and/or using a theoretical 

approach such as the mixture models from Belin and Rubin, are more expensive and cannot be done 

annually.  

 

Larsen and Rubin (2001) present a mixture model for determining whether of not a particular pair is 

in the 𝑀 or the 𝑈 sets. Their mixture likelihood is defined as follows: 

 

𝑝(𝐲|𝜋, 𝜃) = ∏(∑ 𝜋𝑔𝜋𝑙|𝑔

2

𝑔=1

)

𝑛𝑙𝐿

𝑙=1

 

 



   

Literature Search on Combining Survey and 

Administrative Records 
E-3 

   

where 𝑦 = (𝑦1, … , 𝑦𝑙, … , 𝑦𝐿) are the possible patterns of agreement or disagreement (the same as 𝑦 

in Fellegi and Sunter), 𝑔 = 1,2 are the two sets 𝑀 and 𝑈 from Fellegi and Sunter, 𝜋𝑔 is the (overall) 

probability of being in set 𝑔, and 𝜋𝑙|𝑔 is the probability of pattern 𝑙 given the 𝑀 or 𝑈 sets.  𝑛𝑙 is the 

total sample having pattern 𝑙. Each pattern 𝑙 is based on binary agreement/nonagreement for 𝐾 

different matching items (e.g., first name, address, etc.), so that 𝐿 = 2𝐾 . Note that the sample units 

here are all possible pairs (not single record on a single files): only pairs can have patterns of 

agreement or disagreement. Larsen and Rubin carry through on this model using maximum-

likelihood (the EM algorithm) rather than a fuller Bayesian approach. Observed resolved pairs (from 

clerical review) with known values of y and known assignment to 𝑀 or 𝑈 become the data which 

allows for estimation of the parameters. New pair assignments for unresolved cases can be 

determined from the model to ‘predict’ unresolved pairs as being in 𝑀 or 𝑈. The model can actually 

be used to resolve cases into 𝑀, 𝑈 and an intermediate undetermined class which can be then sent 

back for clerical review (and resolution of these can then be used to refit the model and re-estimate 

the parameters). The  𝜋𝑙|𝑔 can be a product of 𝐾 independent probabilities of matching 

(independence model), or it can be a more complicated interdependent linking of the 𝐾 item 

matches (e.g., first name and last name matching are not independent). In their Census data file 

examples, Larsen and Rubin fit a variety of different models. In many of their cases, the 𝜋𝑙|𝑔 models 

differ for 𝑔 = 1, 𝑔 = 2.  

 

 

E.2 Data Linkage: Bayesian Methods 

Goldstein et al. (2012) present a theory (with a simulation study) for linking two files when the data 

linkage is not definite. The two files are the ‘File Of Interest’ (FOI) and the ‘Linked Data File’ 

(LDF). The FOI is the primary file of which analysis is done, and the LDF provides auxiliary 

information for some further fields which are then appended to the FOI. When the link is clear, the 

LDF contributes fields to the linked FOI records directly. When the link is unclear, they outline 

what they call the ‘traditional probabilistic record linkage’ (with some references), in which a linkage 

is made using matching variables which are shared in common between the FOI and LDF. A 

probability 𝑝𝑖𝑗 is computed via a model of the relationship between the matching variables and the 

existence of a true match (or not) and a data analysis informed by the model, which generates the 

estimated probability that LDF record 𝑗 is the match for FOI record 𝑖. There may be 𝑗=1,…,𝑛𝑖 

candidate LDF records, and we have ∑ 𝑝𝑖𝑗
𝑛𝑖
𝑗=1 = 1. We can write 𝐩𝐢 as a vector of {𝑝𝑖𝑗} 

representing our ‘link probabilities’ for linking FOI record 𝑖 to the LDF. This basic structure they 

call the ‘traditional probabilistic record linkage’ approach.  
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Goldstein et al. converts 𝐩𝐢 into a prior probability for a Bayesian-type multiple imputation 

approach. They append to 𝐩𝐢 a second factor 𝑓(𝑦𝑖𝑗
𝐴|𝐵

) which is a more traditional multiple 

imputation maximum likelihood which treats the data being brought over from the LDF records as 

missing data (the ‘A’ data), and models them based on other fields within the FOI or even from the 

LDF (the ‘B’ data). The final set of posterior probabilities 𝛑𝐢 = {𝜋𝑖𝑗} ∝ 𝑓(𝑦𝑖𝑗
𝐴|𝐵

)𝐩𝐢. These posterior 

probabilities are then utilized in a way that is similar to traditional probabilistic record linkage. A 

threshold is taken for the pi and if any j-records exceed the threshold, then the j-record with the 

highest probability is chosen as the linked record to record i. If no records exceed the threshold, 

then no matches are taken and the FOI record has its data filled in by regular imputation.  

 

Goldstein et al. carries out a simulation study that demonstrates the superiority of their mixed 

approach to the traditional probabilistic record linkage approach.  

 

Steorts et al. (2016) moves beyond Goldstein et al. (2012) to a full-scale Bayesian approach. Under 

the Steorts et al. approach, we have 𝑘 files, and assume for simplicity 𝑝 categorical fields in common 

for linking, with 𝑀ℓ levels for each field ℓ, ℓ =1,… 𝑝. Write 𝐱𝐢𝐣 as the vector of matching variables 

of length 𝑝 for the 𝑗th record in file 𝑖. They posit a latent vector 𝐲𝒋′ as a vector of true values for the 

𝒋′th ‘true’ individual in the population, where 𝒋′=1,…,𝑁, with 𝑁 the total number of individuals 

corresponding to the records in the 𝑘 files. They posit a random variable 𝜆𝑖𝑗 (vector 𝚲) which 

points to the true individual 𝒋′=1,…,𝑁 corresponding to record 𝑖𝑗. An important indicator is 𝑧𝑖𝑗ℓ 

which is 1 if there is an error in field 𝑥𝑖𝑗ℓ (or 0 otherwise). 𝛉𝓵 is a vector of multinomial 

probabilities. 𝛽ℓ is the probability 𝑧𝑖𝑗ℓ=1. 𝛿𝒚𝜆𝑖𝑗ℓ
 indicates a point mass at the value of 𝒚𝜆𝑖𝑗ℓ

 (which is 

the value of the categorical vector for the true individual 𝒋′ corresponding to record 𝑖𝑗). The Steorts 

et al. model is as follows: 

 

𝑥𝑖𝑗ℓ | 𝜆𝑖𝑗, 𝒚𝜆𝑖𝑗ℓ
, 𝑧𝑖𝑗ℓ, 𝛉𝓵~{

𝛿𝒚𝜆𝑖𝑗ℓ
𝑧𝑖𝑗ℓ = 1

MN(1, 𝛉𝓵) 𝑧𝑖𝑗ℓ = 0
 

 

𝑧𝑖𝑗ℓ~Bernoulli(𝛽ℓ) 

𝒚𝒋′ℓ|𝛉𝓵~ MN(𝟏, 𝛉𝓵) 

𝛉𝓵~Dirichlet(𝜇ℓ) 

𝛽ℓ~Beta(𝑎ℓ, 𝑏ℓ) 

𝝅(𝚲) ∝ 𝟏 
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MN represents the multinomial distribution. The parameters 𝜇ℓ, 𝑎ℓ, 𝑏ℓ are assumed known. The 

model is fit using the Gibbs sampler, and posterior probabilities of linkage can be then generated. It 

may be necessary to do blocking (dividing the data sets into pieces and allowing links only between 

designated pieces) to allow the Gibbs sampler to run in a reasonable time with reasonable memory. 

The posterior probabilities of linkage are used then to decide on best pairings (𝑖𝑗,𝑖′𝑗′). Their model 

is tested against a set of data sets generated from the National Long Term Care Survey, a 

longitudinal study of the health of elderly individuals, where the real link is known, and the model is 

found to perform well with a relatively limited set of error-prone linking variables (date of birth, sex, 

state of residence, and regional office).  

 

Gutman et al. (2013) provide a further Bayesian model. Assuming for simplicity there are two files 

with equal numbers of records and every record on File 𝐴 has a matching record on File 𝐵, a 

random variable 𝐶𝑗 is defined which indicates the correct permutation of the second file records to 

match all of the first file records one to one. A conditional distribution of 𝐶𝑗 given all of the field 

values (𝐘𝐀 for fields only on File 𝐴, 𝐘𝐁 for fields only on File 𝐵, and 𝐙 being variables on both files)) 

and a set of model parameters can be defined. Likewise a likelihood function of for 𝐘𝐀, 𝐘𝐁, 𝐙 can be 

defined conditional on the particular 𝐶𝑗 and the parameters. This conditional distribution and the 

likelihood, along with Bayesian priors, can be iterated to a solution. Once 𝐶𝑗 is defined, the 

likelihood is easy to state. Once the 𝐘𝐀, 𝐘𝐁, and 𝐙 distributions are specified and the parameters 

defined, probabilities for 𝐶𝑗 can be given. This approach has the virtue of being theoretically clean 

(though dealing with files of different sizes leads to complexities), but the sample universe for 𝐶𝑗 is 

immense: all possible permutations of 1 through 𝑁, where 𝑁 is the file size. This daunting sample 

universe can be reduced by blocking on some of the 𝐙 variables, reducing the set of potential pairs 

and permutations to a much more manageable number. Gutman et al. apply this approach to linking 

the Medicare file (from the Centers for Medicare and Medicaid Services) to the Vital Statistics 

Mortality (VSM) records compiled from death certificates nationwide from the National Center of 

Health Statistics. The goal was to link information about cause of death of decedents in the US 

(from the VSM), with information about Medicare expenditures from the Medicare file about these 

decedents. A gold standard link between these files (e.g., social security number) was not available to 

the researchers. Blocking was done on age, sex, race, month and day of week of death, and state and 

county of residence. This blocking generated small cells, so that there were not too many units. In 

some cases, exact matches were possible, but to represent the population correctly the data set was 

not restricted to exact matches only (which tended to be in small blocking cells). The final models 

are fit directly and analyze Cause of Death (multinomial logistic regression), Place of Death 

(multinomial logistic regression), Medicare Part A expenditures (linear regression), and Medicare 

Part A and B expenditures (linear regression).  
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Tancredi and Liseo (2015) present a further Bayesian model in the context of linear regression 

analysis. The approach of Steorts et al. (2016) and Gutman et al. (2013) is followed in that a matrix 

of all possible match pairs is specified, and the conditional distribution of the variables given this 

matrix is specified, and the conditional distribution of the matrix given these other variables is 

specified. The overall model is fit in an iterative process using the Gibbs sampler. As in Steorts et al. 

there is an allowance for noise: the two data files having slightly differing observations even though 

the match is a true ones. Conditional on a true match, there still can be differing values for particular 

linking variables. Tancredi and Liseo depart somewhat from the other papers in strongly including 

the analysis of interest directly into the parameterization. This means ultimately that matching the 

pairs will be partially driven by the analysis model itself: pairs are given a higher probability of being 

true in a particular iteration if they happen to match well the currently fitted regression model. This 

ties the pairing to a particular model for a particular set of variables, which may not be realistic for 

OSHA/SOII.  

 

Gutman et al. (2015) provide a further application along the lines of Gutman et al. (2013) and 

Tancredi and Liseo (2015). In this application, records from the Rhode Island Department of 

Corrections are linked with records from the Miriam Hospital HIV care program to track the 

experience of recently released HIV+ prisoners in Rhode Island. The basic idea of having a latent 

variable for a true link between two records, and generating a conditional distribution of the 

variables of interest given one realization of ‘true pairs’ is implemented. Their model for deciding on 

true pairs is partially dependent on outcome variables only on one data set (rather than simply on the 

incidence of matching agreements between variables on both data sets). Multiple imputations are 

generated which represent various ‘true pairs’ from the posterior distribution for the potential 

pairings. It should be noted that this analysis is dependent on a ‘gold standard analysis’ being done 

on a small subset of the two files, so that there is firm data on true and false pairings that can go into 

the accurate development of the model.  

 

 

E.3 Adjusting for Imperfect Data Linkage 

There are a number of recent papers where there is a (non-Bayesian) analysis of the effects of 

imperfect data linkage on analysis, and on ways of adjusting for this effectively. This work generally 

focuses on regression analysis between a dependent variable y (from one file), and predictors X 

(from another file imperfectly linked record by record to the first file). This imperfect linking can 

lead to bias in the regression coefficient estimate. The approach of these papers focus on assigning a 
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probability of correct linking. For example, Lahiri and Larsen (2005) work with the following 

standard simple regression model:  

 

𝑦𝑖 = 𝐱𝐢
′𝛃 + 𝜖𝑖      𝑖 = 1,… , 𝑛   𝐸(𝜖𝑖) = 0. 

 

The imperfect linking is modeled by positing a 𝑧𝑖 random variable as follows: 

 

𝑧𝑖 = {
𝑦𝑖 with probability 𝑞𝑖𝑖

𝑦𝑗 with probability 𝑞𝑖𝑗 for 𝑗 ≠ 𝑖.
 

 

The regression is then done implicitly with 𝑧𝑖 as the dependent variable rather than the unobserved 

𝑦𝑖, and results in a biased estimator of 𝛃. If the 𝐪𝐢=(𝑞𝑖1,…, 𝑞𝑖𝑛) vector is known or can be 

estimated, then a weighted regression utilizing the 𝐪𝐢 vector will result in a fully unbiased estimator 

of 𝛃.  

 

Kim and Chambers (2012) posit probabilities of true and false linkings 𝐪𝐢 based on an exchangeable 

linking model (within particular blocks all of the 𝑞𝑖𝑖 are equal, and all of the 𝑞𝑖𝑗 , 𝑗 ≠ 𝑖, are equal). If 

this assumption is reasonable, then the 𝐪𝐢 vector can be fully specified, and unbiased estimators of b 

are readily calculable.  

 

Chipperfield et al. (2011) extend the basic approach as given in Lahiri and Larsen (2005) to 

categorical dependent variables. They study contingency tables and logistic regression. For example, 

they recommend adjusting for imperfect linkages using maximum likelihood under the standard 

logistic regression generalized regression logistic link iterative fitting, but proceed by replacing the 

dichotomous 𝑦 dependent variable with a perturbed version of 𝑦: 

 

�̃�𝑖 = {

𝑦𝑖
∗�̂�𝑥𝑦∗ + (1 − �̂�𝑥𝑦∗)�̃�𝑖 𝑖 ∉ 𝑠𝑐

𝑦𝑖
∗ 𝑖 ∈ 𝑠𝑐 and 𝛿𝑖 = 1

�̃�𝑖 𝑖 ∈ 𝑠𝑐 and 𝛿𝑖 = 0

} 

 

with 𝑠𝑐 being the set of linked records, 𝛿𝑖 indicating a successful linking or not (based on clerical 

review), 𝑦𝑖
∗ is the value of 𝑦 from the linked record, �̃�𝑖 is the expected value of 𝑦 from the most 

current iteration of the maximum likelihood, and �̂�𝑥𝑦∗ is the probability of being correctly linked for 

the particular pair (𝑥 being the predictor variables, and 𝑦 being the dependent variable value from 

the linked record). �̂�𝑥𝑦∗ is computed from the clerical review records. As in the regular regression as 
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given in Lahiri and Larson (2005), the insertion of these predicted probabilities of accurate linkage 

into the maximum likelihood iterations, if done accurately, will eliminate the bias from invalid links.  

 

Hof and Zwinderman (2015) provide a similar approach for carrying out maximum likelihood for a 

general model in the presence of imperfect linkages. Their model is different in the sense that they 

define a likelihood function for all possible pairs between the two matched files. One file (File 𝐴 

with 𝑛 records) is providing the 𝑦𝑖 values (the dependent variable), and the other file (File 𝐵 with 𝑚 

records) is providing the 𝐱𝐢 predictor variable values. They define a a 𝑑𝑖𝑗 random variable which is 

equal to 1 if record 𝑖 in File 𝐴 matches record 𝑗 on File 𝐵, and is 0 otherwise. Their likelihood in the 

general case (before simplifying assumptions, and leaving out parameters) is: 

 

∏∏{  𝐿(𝑦𝑗 , 𝐱𝐢, 𝐠𝐢𝐣|𝑑𝑖𝑗 = 1 )𝑃𝑟(𝑑𝑖𝑗 = 1)    +    𝐿(𝑦𝑗 , 𝐱𝐢, 𝐠𝐢𝐣|𝑑𝑖𝑗 = 0 )𝑃𝑟(𝑑𝑖𝑗 = 0)  }

𝑚

𝑗=1

𝑛

𝑖=1

 

 

𝐠𝐢𝐣 is a vector of binary agreements and disagreements between record 𝑖 in File 𝐴 and record 𝑗 on 

File 𝐵 underlying the matching process. Later in the paper it is assumed that 𝐠𝐢𝐣’s distribution is 

independent of 𝑦𝑗 and 𝐱𝐢, which allows the probabilities for 𝐠𝐢𝐣 and 𝑑𝑖𝑗 to be done on their own 

based on standard methods for PRL. The likelihood portion for 𝑑𝑖𝑗 = 0  (no match) is much 

simpler: 𝑦𝑗 and 𝐱𝐢 are assumed to be independent.  

 

A likelihood function which is based on all possible pairs between two files can certainly be massive. 

Hof and Zwinderman (2015) work with a realistic real world example: matching first and second 

pregnancies from the Perinatal Registry Netherlands registry. There were 393,302 first deliveries and 

312,871 second deliveries, so the total number of potential record pairs was 1.2x1011. They reduced 

this considerably by taking only the roughly 100,000 pairs with a predicted probability of matching 

greater than 0.01. This type of fudge would be necessary in practice to make this procedure 

practicable, unless the data sets are small.  
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Appendix F 

Detailed Review of Papers on Data Fusion 

 
F.1 Data Fusion: Moriarity and Scheuren (2001) 

Moriarity and Scheuren (2001) provide an overview of data fusion (statistical matching). Their 

starting point is a paper by Kadane from 1978 which is reprinted with their 2001 paper.  

 

Kadane (2001) sets out a theoretical approach for the basic scenario of having one file with records 

with an X vector and a Y vector, and a second file with records with an X vector and a Z vector, 

with the final goal of doing analysis of the joint distribution of (X, Y, Z). One can match entirely on 

X (taking records with the same or very similar X vector values), and put together on a synthetic 

record the components 𝐲𝟏 from the one file record and 𝐳𝟏 from the other file record. Creating a 

synthetic file in this way will produce a file that has the right marginal distributions for X, Y, and Z, 

and the right correlations for X and Y, X and Z, but the file will effectively have Y and Z 

conditionally independent given X (an artifact of the file’s construction).  

 

Kadane (2001) admits there is no information available from the two files themselves about the right 

conditional distribution between Y and Z. Progress can only be made by making assumptions about 

the conditional correlation between Y and Z. Kadane puts forward a Bayesian approach for eliciting 

a prior for this correlation. The correlations between X and Y and X and Z force certain bounds on 

the possible correlations of Y and Z (for example, if the correlations between univariate X and Y 

and univariate X and Z are both very high, then it is not possible for the correlations between Y and 

Z to be close to 0), but these constraints may in many cases be quite loose. Once a correlation is 

designated (one draw from the prior distribution), one can proceed to construct an artificial data set. 

For the file with Z missing, one can produce the conditional expectation for Z given 𝐱𝐢 and 𝐲𝐢, using 

the assigned covariance matrix relating 𝐱𝐢, 𝐲𝐢, and 𝐳𝐢, and for the file with Y missing, the conditional 

expectation for Y given 𝐱𝐢 and 𝐳𝐢, using the assigned covariance matrix relating 𝐱𝐢, 𝐲𝐢, and 𝐳𝐢 

(Kadane works within multivariate normality so that the full joint distribution is determined by 

conditional expectations and conditional variances and covariances). The resultant augmented Z-

missing file has records 𝐰𝐣 = (𝐱𝐣, 𝐲𝐣, �̂�𝐣), (with �̂�𝐣 the conditional expectation), and the augmented 

Y-missing file has records 𝐯𝐢 = (𝐱𝐢, �̂�𝐢, 𝐳𝐢), (with �̂�𝐢 the conditional expectation). The matching of 

the two augmented files is done using a Mahalanobis distance 𝑑𝑖𝑗 = (𝐰𝐣 − 𝐯𝐢)
′
(𝐒𝟏 + 𝐒𝟐)

−1(𝐰𝐣 −

𝐯𝐢)  where 𝐒𝟏 and 𝐒𝟐 are the variance matrices of 𝐯𝐢 and 𝐰𝐣 respectively. The matching process then 

produces the synthetic file with records (𝐱𝐢, 𝐲𝐢, 𝐳𝐢) created by pairing the closest 𝐰𝐣’s and 𝐯𝐢’s.  



   

Literature Search on Combining Survey and 

Administrative Records 
F-2 

   

Moriarity and Scheuren (2001) criticize this approach as not really reproducing the prior correlation 

between Y and Z. In simulation studies they show that it produces a synthetic file with a different 

correlation between Y and Z than the posited correlation. They fix this inadequacy by proposing a 

methodology in which the missing Y values and the missing Z values are imputed first using 

conditional distributions based on the prior draw of the Y,Z correlation. Once the files are 

augmented in this way, the matching procedure will produce a synthetic file which retains the 

marginal distributions of X, Y, and Z, the joint distribution of (X,Y) from the Z-missing file, and the 

joint distribution of (X,Z) from the Y-missing file, as well as the posited (Y,Z) correlation.  

 

 

F.2 Data Fusion: Rässler (2002) 

Rässler (2002) presents an overview of statistical matching her monograph. In her Section 2 she 

presents an overview of the ‘frequentist statistical matching’ approach which matches data vectors 

(𝑥𝑖, 𝑧𝑖) and (𝑦𝑖, 𝑧𝑖)  on matching vector 𝑧𝑖
5. Rässler makes a distinction between the true joint pdf  

 

𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑌,𝑍(𝑦, 𝑧)𝑓𝑋|𝑌,𝑍(𝑥|𝑦, 𝑧) 

 

and the induced joint pdf from the statistical matching operation: 

 

𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑌,𝑍(𝑦, 𝑧)𝑓𝑋|𝑍(𝑥|𝑧) 

 

Note that the induced pdf has a conditional probability of 𝑥 on 𝑧 rather than a conditional 

probability of 𝑥 on 𝑦, 𝑧 as would be correct. Likewise the true and induced covariances of X and Y 

are, respectively, 

 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸{𝐶𝑜𝑣(𝑋, 𝑌|𝑍)} + 𝐶𝑜𝑣{𝐸(𝑋|𝑍), 𝐸(𝑌|𝑍)} 

𝐶𝑜�̃�(𝑋, 𝑌) = 𝐶𝑜𝑣{𝐸(𝑋|𝑍), 𝐸(𝑌|𝑍)} 

 

In Section 3, Rässler (2002) presents an overview of traditional approaches including data fusion in 

Europe and in the US and Canada. Included are ‘unconstrained matching’, ‘constrained matching’, 

‘categorically constrained matching’, as well as clustering methods. Suppose for example we have 

one file (‘recipients’) with eight records and 𝑥 and 𝑧 fields, and a second file (‘donors’) with six 

                                                 

5 Note here we match the notation in Rässler (2002) and contradict the notation in Section 3.1 and E.1 (to keep faith with the 
reference).  
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records and 𝑦 and 𝑧 fields. Under ‘unconstrained matching’ we create a file with eight records based 

on the recipients matched by zi vectors on the donors, with donors being taken with no regard as to 

how many times a donor is matched. This leads to a distortion of the marginal 𝑦 distribution, which 

is perceived as problematic by some researchers.  

 

Constrained matching controls the selection of donors in such a way as to preserve the y distribution 

in the linked file. This can be done by ‘exploding the donor file’: creating multiple donor records 

from the initial donor file, and then allocating these multiple donors carefully to retain the marginal 

distribution. Categorically constrained matching tightens the matching process by categorizing the 

fields and tightening further the matching process, possibly also including auxiliary information from 

external sources for calibration. Rässler presents references for each of these approaches.  

 

In her Section 4.5 Rässler (2002) presents a solution to the statistical matching problem through 

Bayesian multiple imputation, which is called ‘non-iterative Bayesian-based multivariate imputation’. 

The two files are combined, and the missing X data in the X-missing file and the missing Y data in 

the Y-missing file are assumed to be the blocks of data which are ‘missing at random’ conditional on 

Z.  

 

A multivariate normal model is assumed with noninformative priors, except for the conditional 

correlation of X and Y given Z. This conditional correlation cannot be estimated in any way from 

the data, and has to be assigned in a fairly arbitrary way, using priors or relevant auxiliary 

information of some type. With this input, all other component random variables in the model have 

posterior distributions generated in the usual way for the multivariate normal model with 

noninformative priors: variances have as their posterior mean sample variances, regression 

parameters are drawn from standard posterior distributions, covariances are drawn after the critical 

X,Y conditional correlation is set (or drawn from a prior distribution), and then the missing X and Y 

blocks are drawn from the appropriate posterior distributions conditional on draws of parameters 

from their posterior distributions.  



 

 

Appendix G 

Detailed Review of Papers on Imputation



 

   

Literature Search on Combining Survey and 

Administrative Records 
G-1 

   

Appendix G 

Detailed Review of Papers on Imputation 

 
G.1 Imputation: Self-Reports and Clinical Data from NHIS and 

NHANES. 

Raghunathan (2006) and Schenker et al. (2010) work with a problem similar to the OSHA/SOII 

application. The self-report items for both NHIS and NHANES provide self-reported hypertension, 

diabetes, and obesity for sampled persons (the incidence is based on how persons answer particular 

questions: for example for obesity the incidence is based on self-reported height and weight; for 

diabetes on direct questions about the disease). In all of these cases, the self-report incidence is 

lower than the clinical incidence from the NHANES clinical evaluations.  

 

Schenker et al. (2010) create then something that fills in for a clinically based evaluation health status 

for the NHIS for these three health statuses, which will not suffer from the self-reporting bias. They 

do this through generating multiple imputations on the NHIS for each record using the self-report 

status and other covariates which are shared between NHIS and NHANES. These multiple 

imputations are based on fitting a model to the clinically based evaluations in NHANES, using as 

predictors the self-report statuses and other covariates. There is no direct linking between NHIS and 

NHANES records. The model though depends on NHANES having the same self-report questions 

for the NHANES records as NHIS that can be used to generate a completely relevant model. There 

is no overlap of records, but complete overlap of the questionnaire items allowing for the 

construction of an NHANES-based multiple imputation model that is completely relevant for the 

NHIS records.  

 

One special aspect of this model is that they fit the model on subsets of the NHANES data set 

which are defined using a ‘propensity for being an NHIS sample record’. Each NHANES 

observation is assigned a propensity for being in the NHIS sample based on a logistic regression 

model using covariates common to both surveys. These predicted propensities then are used to 

define the subsets. Separate clinical-evaluation propensity models are fit for each subset. The 

motivation for this is the fear that the model may not be specified perfectly, and differences in the 

distributions of the covariate space between NHANES and NHIS could result in the model fit from 

NHANES extrapolating poorly to portions of the NHIS covariate space not well-represented in 

NHANES. By doing local model fits on these subsets, the models that are fit to NHANES within 

the subset should be within the covariate bounds of the corresponding NHIS data subset, reducing 
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biases from extrapolation. This type of thing is done in pseudo-experimental studies matching 

pseudo-treated to pseudo-controls, where the propensity used is the propensity to be in the 

treatment group. Schenker et al. (2010) apply that theory in this application.  

 

Raghunathan (2006) is an earlier version of this theory which is proposed to deal with the general 

issue of self-reported data, and applies it to the NHIS-NHANES case for hypertension status. The 

later Schenker et al. (2010) research develops the idea fully.  

 

 

G.2 Imputation: Incomplete Data on Hospice-Use from the 

CanCORS. 

Table G-1 from He et al. (2014) below summarizes their data set. Information on use of a hospice 

can come from Medicare claims of the patient if the patient is 65+ years old or from medical records 

(e.g., doctor, hospital). There is missing data in both sources, and the sources contradict each other.  

 
Table G-1.  Table 1 from He et al. (2014): 3,027 CanCORS lung and colorectal cancer patients 

who died within 15 months of diagnosis. 

 

Whether Patient Utilized Hospice Services  

Medicare claims 

Yes 

Medicare claims 

No 

Medicare claims 

missing 

Medical records Yes 395  54 260 

Medical records No 445  617 646 

Medical records Missing 136  116 358 

 

He et al. (2014) construct a latent variable model where 𝑌𝑂 is the true value (equal to 1 if the patient 

used hospice services, 0 if the patient did not), and 𝑌𝑅1 and 𝑌𝑅2 are the reported values from 

Medicare claims and medical records respectively. There is a set of covariates 𝑋 which include the 

cancer type, cancer stage, sex, age, race, gender, education, and other health aspects. There is a 

random effect for site. The four aspects of their model were: 

 

 A probit regression model for the true 𝑌𝑂 predicted by the covariates; 

 A probit regression model for 𝑌𝑅1 given 𝑌𝑂 and the covariates; 

 A probit regression model for 𝑌𝑅2 given 𝑌𝑂 and the covariates. 

 If 𝑌𝑂=0, then 𝑌𝑅1=𝑌𝑅2=0.  
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Since 𝑌𝑂 is unobservable, a latent variable type Bayesian framework is necessary. The fourth 

assumption is a key assumption, and allows for the identifiability of the model according to He et al. 

(2014). This assumption assumes no ‘overreporting’. If the patient has not utilized hospice, then 

neither Medicare nor the medical records will indicate hospice use. The direction of an error is 

assumed to be always in the direction of underreporting: true hospice use may not be indicated in 

either a Medicare claim or a medical record, for a variety of reasons. A missing value on the other 

hand can mean anything. He et al. (2014) in their discussion section point to other literature where 

this assumption is not made (in similar applications), and weak identifiability of the models results.  

 

 

G.3 Imputation: Combining Cancer Registry Data with Followup 

Survey Data 

The Yucel and Zaslavsky (2005) approach is as follows. Define 𝑦(𝑅)1, 𝑦(𝑅)2 as the cancer-registry 

reported chemotherapy incidence in ‘S1’ (the validation sample), and ‘S2’ (the remainder of the 

relevant years’ cancer registry data not sampled in the validation sample), respectively, and define 

𝑦(𝑂)1, 𝑦(𝑂)2 as the true chemotherapy incidence from the two data sources S1 and S2 reported by 

the presiding physician. Note that we assume 𝑦(𝑂)1 is fully observed for the respondents to the 

validation survey, and 𝑦(𝑂)2 is not observed.  

 

Yucel and Zaslavsky (2005) proceed by effectively imputing 𝑦(𝑂)2  for all members of S2. Note that 

𝑦(𝑂)1 must also be imputed for nonrespondents to the validation survey. With this mass imputation 

of chemotherapy onto the cancer registry, they proceed to fit a model of two-year survival on the 

registry with chemotherapy as one predictor (the other predictors are in better shape in terms of 

reliability on the cancer registry). Note that sometimes reported values in the registry (𝑦(𝑅)1) are 

effectively overruled by the validation study (𝑦(𝑂)1).  

 

They make one key assumption very similar to that made by He et al. (2014) as described in Section 

7.2: that a report on the cancer registry of a patient receiving chemotherapy (𝑦(𝑅)1 = 1 or 𝑦(𝑅)2 =

1) must correspond to a true chemotherapy (𝑦(𝑂)1 = 1 or 𝑦(𝑂)2 = 1). Errors in the cancer registry 

are only in the direction of failing to report chemotherapy that has occurred, not falsely reporting 

chemotherapy that has not occurred. Beyond this assumption, the model was a fairly standard 

Bayesian random effects probit regression.  
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He and Zaslavsky (2009) further extend the Yucel and Zaslavsky (2005) approach to a multivariate 

y-variable (a vector of L therapy outcomes, rather than a single outcome).  

 

 

G.4 Mass Imputation: Combining Complex Surveys by Imputing 

to the Full Population 

Dong et al. (2014b) propose combining surveys through recreating the frame by filling in by 

imputation all of the unsampled (and sampled but nonresponding) population members. They utilize 

a nonparametric Bayesian Bootstrap for this: drawing with replacement from the empirical sample 

distribution. Unequal weighting and unit nonresponse is dealt with by including final weights in this 

bootstrap. Clustering is dealt with by bootstrapping entire clusters. Once this process is complete, 

one has a full bootstrapped frame from the survey that can be combined with the bootstrapped 

frame from the other surveys.  

 

Dong et al. (2014b) apply this theory to estimate health insurance prevalence: the percentage of 

persons who have no health insurance, those who are publicly insured (Medicare or Medicaid 

primarily), and those who are privately insured. The three sources are the National Health Insurance 

Survey (NHIS), the Medical Expenditure Panel Survey (MEPS), and the Behavior Risk Factors 

Surveillance System (BRFSS). These are all bootstrapped up to the population level and a combined 

frame created, and an estimator of health insurance prevalence is generated from the combined 

frame. Dong et al. (2014a) is a companion paper from the same authors that provides details on the 

Bayesian Bootstrap.  

 

 


