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1. Introduction 
 

The Consumer Expenditure Survey (CE) is a 
nationwide household survey conducted by the U.S. 
Bureau of Labor Statistics (BLS) to find out how 
Americans spend their money. As with any survey, 
the accuracy of CE’s published expenditure estimates 
depends on the accuracy of the collected data.  The 
CE survey has several procedures already in place to 
ensure the accuracy of its published expenditure 
estimates.  They include reinterviews of some 
respondents, computerized checks for the logical 
consistency of responses given by respondents, an 
outlier review of individual survey responses, and 
another outlier review of the summarized expenditure 
estimates before they are published (BLS Handbook 
of Methods). 

In this paper we describe another method of 
identifying inaccurate survey data.  The method is 
little-known, but it has been rapidly gaining 
popularity over the past decade.  The method 
involves examining the distribution of the leading (or 
left-most) digits of all the numbers reported on a 
survey form.  These leading digits have been 
observed to follow a certain distribution regardless of 
the nature of the survey.  This phenomenon is called 
Benford’s Law. By knowing the distribution of the 
leading digits, one can identify unusual data which 
may be fraudulent or generated by an error-prone 
process by identifying the interviews in which the 
distribution of leading digits does not follow the 
expected distribution. 

In this paper we will describe the Consumer 
Expenditure Survey and the current methods used in 

that survey to identify inaccurate data.  Then we will 
describe Benford’s Law, describe some applications 
of it in other settings, and then we will give an 
example showing how Benford’s Law can be used to 
identify unusual data in a survey setting using CE 
data as an example. 
 
2. Background 
 

The Consumer Expenditure Survey is a nationwide 
household survey conducted by the BLS to find out 
how Americans spend their money. Data for the 
survey are collected by the Bureau of the Census 
under contract with the BLS. One of the primary uses 
of the data is to provide expenditure weights for the 
Consumer Price Index.  Data are collected by 
personal visits to the households in the survey’s 
sample. 

The Consumer Expenditure Survey consists of two 
separate surveys, the Diary (CED) and Quarterly 
Interview (CEQ) surveys. The purpose of the CED is 
to obtain detailed expenditure data on small, 
frequently purchased items such as food and apparel. 
The purpose of the CEQ is to obtain detailed 
expenditure data on large items such as property, 
automobiles, and major appliances; and on expenses 
that occur on a regular basis such as rent, utility bills, 
and insurance premiums. Approximately 3,500 
households are visited each quarter of the year in the 
CED, and 15,000 households in the CEQ. 

The CED uses a new sample of households each 
quarter of the year.  Each household in the CED is 
asked to keep a record of all its expenditures made 
during a 2-week period.  After participating in the 
survey for 2 weeks the household is dropped from the 
survey, and it is replaced by another household. 

The CEQ is a panel rotation survey.  Each panel is 
interviewed for five consecutive quarters, and then 
dropped from the survey.  As one panel leaves the 
survey, a new panel is introduced.  Approximately 20 
percent of the addresses are new to the survey each 
quarter. 
 



 

3. Current Methods of Identifying Problematic 
Data in the CE Survey 
 

The CEQ and CED surveys currently have several 
methods of identifying incorrect data.  The first 
method is a reinterview process in which a field 
representative’s supervisor calls a small number of 
respondents who participated in the survey on the 
telephone to find out whether the respondent was 
actually visited by the field representative, and to 
verify the accuracy of a few of their responses.  Some 
respondents are randomly selected, while others are 
selected because the supervisor is suspicious of the 
data’s accuracy. The reinterview process is mainly 
intended to catch curbstoners, field representatives 
who make up the data without ever visiting or 
contacting the respondent. 

After the reinterview process, all of the remaining 
methods of checking the data are intended to identify 
legitimate data that were incorrectly recorded or 
keyed.  The methods include a computerized check 
for logical consistency of the responses, an outlier 
analysis for individual reported observations, and 
another outlier analysis on the summarized 
expenditure estimates before they are published. 

An example of a logical consistency error is when 
a box is checked off indicating that no expenditures 
were made in a certain item category, but yet there is 
an expenditure reported anyway.  Logical consistency 
errors are easy for a computer to find. 

The outlier review process for individual reported 
expenditures involves identifying observations that 
are unusually large, and then investigating them to 
find out whether they are accurate or seem 
reasonable.  Photocopies of the completed survey 
forms are stored on microfilm, and an examination of 
the survey forms sometimes reveals keying errors, 
such as a misplaced decimal point changing a 
reported expenditure from $2.99 to $299.00.  CE’s 
outlier analysis focuses on large expenditures rather 
than small expenditures because large outliers have a 
much larger impact on the final published 
expenditure estimates. 

CE uses four methods of identifying outliers: 
• The largest gap test. The mean 
expenditure is calculated for each dollar 
field within each item code.  The 
expenditures above the mean are sorted in 
descending order, and the difference (or 
gap) between each expenditure and the one 
below it is calculated.  The largest of these 
gaps is identified, and all expenditures 
above it are flagged for review. 
• If the reported expenditure is the largest 
value within its area/item combination it is 
flagged for review. 

• If the reported expenditure is greater than 
25% of the total of all expenditures within 
its area/item combination (50% is used 
instead of 25% if the number of 
expenditures is below 10) it is flagged for 
review. 
• If the reported expenditure is greater than 
20 times the median reported expenditure 
within its area/item combination it is flagged 
for review. 

Every observation flagged as an outlier by one or 
more of these tests is printed on an outlier review 
listing.  To help reviewers focus on the more extreme 
outliers, scores are given to each outlier, with the 
score basically reflecting the number of tests that 
considered it to be an outlier. 
 
4. Other Methods of Detecting Incorrect Data 
 

Reinterviews and outlier reviews are the most 
common methods of identifying incorrect or falsified 
survey data, but other methods of detecting them 
have also been proposed.  For example, Biemer and 
Stokes (1989) report that in 1982 the Census Bureau 
started collecting information on the interviewers it 
caught cheating in order to develop a profile of the 
people and situations in which cheating was found.  
One of the Census Bureau’s findings was that most 
cheating occurred with new interviewers who worked 
for the Census Bureau for less than one year.  Biemer 
and Stokes used this information to develop a model 
for improving the detection of interviewer cheating. 

Another method is to compare the survey results 
obtained by different interviewers.  Turner et. al. 
(2000) presented a case study in which falsified 
survey data were detected in an epidemiologic survey 
when one of the interviewers was observed to have 
an unusually high interview yield.  Most interviewers 
were successful obtaining interviews from about 30% 
of the sampled households, while one interviewer had 
a success rate of 85%.  A review of the interviewer’s 
results along with numerous reinterviews showed that 
much of the data were falsified. 

Further examinations of the data turned up more 
interviewers with falsified data.  When their data 
were examined it was observed that not only were 
their response rates higher than normal, but the 
fabricated data were different as well.  For example, 
interviewers whose data were believed to be accurate 
showed 50% of all households in the survey’s sample 
having one “eligible adult,” while interviewers whose 
data were believed to be fabricated showed almost 
70% of the households having one eligible adult.  As 
a result of their experience with this survey Turner et. 
al. advocate examining the incoming data on a daily 



 

basis in order to catch clues of potential data 
falsification as soon as possible. 
 
5. Benford’s Law 
 

Another method of identifying incorrect data that 
has received a lot of attention in recent years is called 
Benford’s Law.  The method is named for Frank 
Benford, an American physicist who published a 
paper in 1938 describing a curious property that large 
collections of “real world” numbers tend to have: the 
leading (or left-most) digit of the numbers is more 
likely to be small rather than large. Specifically, he 
found that the proportion of “real world” numbers 
whose leading digit is d=1,2,3,…,9 is approximately 








 +
d

d 1log10 .  This phenomenon is called Benford’s 

Law. 
Hill (1995) published a paper with the first 

rigorous mathematical explanation of why the 
leading digits in many data sets follow Benford’s 
Law.  Hill offered several explanations.  One of  his 
explanations involved a type of central limit theorem 
in which several probability distributions are chosen 
at random from a large collection of probability 
distributions.  Then several random variables are 
chosen from each of the selected distributions.  Under 
these conditions Hill proved that the leading digits of 
the numbers follow Benford’s Law. This can be 
written mathematically as: 
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where x is the leading digit of a randomly-selected 
number. 

For example, in the CE survey respondents report 
their expenditures on a large number of item 
categories, with each item category having a different 
distribution of expenditures.  Then within each item 
category the respondents report several expenditures.  
Thus we have several different probability 
distributions, and several random variables are 
chosen from each distribution, so the conditions 
described by Hill are satisfied.  As a consequence the 
leading digits of all the expenditures reported on the 
CE’s survey forms should follow Benford’s Law. 
 
6. Applications of Benford’s Law in Other Areas 
 

Modern applications of Benford’s Law began in 
1992, when Mark Nigrini examined the distribution 
of leading digits he found in some sales and expense 
data for his doctoral thesis.  The data he examined 
followed Benford’s Law quite closely.  Then after 
that initial success, Nigrini continued to use 
Benford’s Law to examine other business and 

financial data.  For example, he used it to examine 
the expense claims of a nationwide chain of motels, 
where he uncovered approximately one million 
dollars of fraudulent claims. 

Then in 1996 Nigrini examined IRS tax return data 
and found that the leading digits of the line items 
“Interest Paid” and “Interest Received” followed 
Benford’s Law.  His tax return study was published 
in the Journal of the American Taxation Association. 
Next Nigrini examined the leading digits of the 
numbers contained in President Clinton’s tax returns 
for the years 1977-1992.  Nigrini found that the 
leading digits followed Benford’s Law, so he 
concluded that President Clinton’s tax returns were 
honest. 

These and other studies conducted by Nigrini 
generated a lot of interest within the accounting 
industry, and today the accounting industry is the 
largest business sector using Benford’s Law to detect 
fraudulent data. Nigrini’s work also led to tax 
agencies in several countries around the world as 
well as several U.S. states, including California, 
using Benford’s Law to detect fraudulent data on tax 
returns. 

Finally, the scientific community is occasionally 
rocked by studies that turn out to contain falsified 
data, and Benford’s Law is starting to be used there 
to detect such falsified data. 
 
7. Leading Digit Patterns in CE Data 
 

The table below shows expenditure data collected 
by the CEQ survey in the year 2000.  The survey 
collected data on 734,684 expenditures. By looking at 
the table it can be seen that the leading digits of those 
expenditures follow Benford’s Law quite closely.  
According to CEQ data, 30.5% of the leading digits 
were 1’s, while Benford’s Law predicted the 
percentage to be 30.1%.  The percentage of leading 
digits equal to 2 was 19.3% in the CEQ data, while 
Benford’s Law predicted the percentage to be 17.6%. 
 

Table 1. 
Comparison of CEQ Data with Benford’s Law 

Leading Reported Expenditures Benford’s Law 

Digit (d) Number Percent (SE) 
%100

1
log10 ×







 +
d

d

 
1 223,776  30.5 (.063) 30.1  
2 141,992  19.3 (.053) 17.6  
3 90,589  12.3 (.045) 12.5  
4 66,266  9.0 (.040) 9.7  
5 76,473  10.4 (.044) 7.9  
6 50,024  6.8 (.034) 6.7  
7 35,019  4.8 (.029) 5.8  
8 32,294  4.4 (.028) 5.1  
9 18,251  2.5 (.021) 4.6  

Total 734,684  100.0  100.0  
 



 

Although the CEQ data follow Benford’s Law 
quite closely for some digits, a detailed examination 
of the data reveals a slight excess of 2’s and 5’s, and 
a slight shortage of 9’s in the data.  In the CEQ data 
19.3% of the leading digits were 2’s, while Benford’s 
Law predicted the percentage to be 17.6%.  Likewise, 
10.4% of CEQ’s leading digits were 5’s, while 
Benford’s Law predicted it to be 7.9%.  This slight 
excess of 2’s and 5’s is usually attributed to 
respondents rounding their expenditures to numbers 
such as $25 or $50, but it might also represent 
fraudulent (or curbstoned) data in which field 
representatives created data that tended to start with 
2’s and 5’s.  The low percentage of 9’s is curious 
because their shortage cannot be attributed to 
rounding numbers either up or down.  The CEQ data 
have fewer 8’s than Benford’s Law predicts, so the 
expenditures are probably not rounded down, and 
there are not enough 1’s to account for rounding up 
(the 1’s exceed Benford’s prediction by 0.4 
percentage points, but there is a 2.1 percentage point 
shortage of 9’s). 

The standard errors in Table 1 are equal to the 
square root of the average of 100 random-group 
variance estimates, where each random-group 
variance estimate is based on randomly partitioning 
the set of sample consumer units into 50 groups. The 
point estimates and variance estimates repeated in 
Table 1 are unweighted. Table 2 compares the 
unweighted estimates with the weighted estimates. 
The standard errors in the last column of Table 2 are 
obtained by the balanced repeated replication method 
with 44 replicate weights. 

 
Table 2. 

Comparison of Unweighted and weighted Ratio 
Leading   

Digit (d) Number Percent (SE) 
unweighted 

Percent (SE) 
weighted 

1 223,776  30.5 (.063) 30.4 (.072) 
2 141,992  19.3 (.053) 19.3 (.081) 
3 90,589  12.3 (.045) 12.3 (.057) 
4 66,266  9.0 (.040) 9.0 (.047) 
5 76,473  10.4 (.044) 10.5 (.056) 
6 50,024  6.8 (.034) 6.8 (.046) 
7 35,019  4.8 (.029) 4.8 (.035) 
8 32,294  4.4 (.028) 4.4 (.041) 
9 18,251  2.5 (.021) 2.5 (.033) 

Total 734,684  100.0  100.0  
 
The ratio of these two standard errors, ( )2

RG

BRR
SE
SE  , can 

be viewed as a deff. The range of ratios of the deffs is 
from 1.32 to 2.35.  Note that the calculation of these 
deffs are based on standard errors with more digits 
than the reported ones.  

When the interclass correlation coefficient is 0, we 
can derive 21 CVdeff +=  where CV is the coefficient 
of variation of weights. This derivation is from the 
formula which Kish proposed to determine the design 

effect in order to incorporate the effects due to  both 
weighting and clustered selection.  Gabler et. al. 
justified the formula.  

Figure 1 displays a quantile-quantile plot of Fisher 
Z, where the standardized Fisher Z is defined as 
follows: 
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where ijρ  is the correlation coefficient between the 
weighted proportions of leading digit i and j for i≠j. 
We computed ijρ  from a covariance obtained by the 
balanced repeated replication method with 44 
replicate weights. Since we have 40 degrees of 
freedom in our example data, n equals to 41. Note 

that 
ji

ji

qq
pp
ˆˆ
ˆˆ

−  is the consistent estimator of 

correlation of ip̂  and jp̂  for i≠j under the 
multinomial model. Therefore this difference in the 
second term should converge to 0 if the multinomial 
model is satisfied.  On the other hand, the fact that 
the absolute value of ijẐ  is large means that that  the 
absolute value of ijρ  is large, i.e., ip̂  and jp̂  are 
highly correlated in our example data. 

Figure 1 suggests that the principal deviation from 
normality is observed in the third though thirty-third 
values of being smaller than the associated quantile 
of the standard normal distribution. One should be 
cautious not to over-interpret this result because the 
values are not independent. However, this quantile-
quantile plot is consistent with a mixture model in 
which some interviewers have a digit reporting 
profile that differs from those of the other 
interviewers. This suggests that further investigation 
of negative correlations associated with mixtures of 
multinomial distributions would be of interest. 

 
Figure 1. 
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8. Identifying the Source of Unusual Data 
 

Benford’s Law can be used to help identify 
sources of unusual data.  For example, suppose a 
field representative is suspected of curbstoning.  
Many studies (e.g., Browne, 1998) have shown that 
people tend to be bad at fabricating realistic data, so 
one way of identifying curbstoners is to see whether 
their data follow Benford’s Law.  If it does, then they 
are probably collecting accurate data.  If it does not, 
then they may be fabricating at least some of the data. 

If the data from each field representative is viewed 
as arising from a simple random sample, then 
Pearson’s chi-square test statistic may be helpful in 
determining whether a field representative’s collected 
data follow Benford’s Law: 
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where 
n = the number of expenditures reported 

by a particular field representative, 
dp̂  = the proportion of those expenditures 

whose leading digit is d, and 
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This statistic is a goodness-of-fit measure that has 

a chi-square distribution with 9−1=8 degrees of 
freedom. 

An alternative test statistic is the same formula, 
but where dp  is the proportion of all numbers 
collected in the survey whose leading digit is d.  This 
alternative definition of dp  is computed from the 
complete universe of data collected from all field 
representatives.  It takes into consideration the fact 
that Benford’s Law may not hold exactly for a 
particular data set.  It also assumes that the vast 
majority of field representatives are honest, so that 
the estimated value of dp  using the complete 
universe of collected data from all field 
representatives is close to the true value of dp .  This 
is sometime called a digital analysis. 

Table 3 shows an example of CEQ data from a 
typical field representative (θ  = 10.39) and from an 
unusual field representative (θ = 102.43) using CE’s 
complete set of collected data to estimate dp : 

The data in Table 3 show that the unusual field 
representative has a large number of 5’s and 6’s.  
When 1,132 expenditures are reported, the 
percentage of leading digits equal to 5 should be 
approximately 10.4% ± 1.8%, but 17.2% of that field 
representative’s leading digits are 5’s.  Likewise, the 

percentage of leading digits equal to 6 should be 
approximately 6.8% ± 1.5%, but 10.5% of that field 
representative’s leading digits are 6’s.  These unusual 
results suggest that the field representative may have 
fabricated some of the data.  These confidence 
intervals are computed as SEpd ⋅± 2 . 

 
Table 3. 

An Example of Data from Typical and Unusual 
Field Representatives 

 
Leading 
Digit (d) 

CEQ’s 
Nationwide 
Distribution 
(n=734,684) 

 
A Typical FR 
(θ = 10.39) 
(n=1,143)  

 
An Unusual FR 

(θ = 102.43) 
(n=1,132)  

1 30.5  31.4  28.9  
2 19.3  19.7  18.0  
3 12.3  11.6  8.1  
4 9.0  9.5  8.5  
5 10.4  8.3  17.2  
6 6.8  6.4  10.5  
7 4.8  4.7  4.2  
8 4.4  5.2  3.2  
9 2.5  3.2  1.3  

Total 100.0  100.0  100.0  
 
The  chi-square distribution with 9−1=8 degrees of 

freedom has a mean of 8.0 and a standard deviation 
of 4.0, hence only 1 out of every 1,000,000 field 
representatives should have a test statistic greater 
than 42.7.  However, an examination of the CEQ data 
reveals 5 field representatives with test statistics 
greater than 42.7, and 1 field representative with a 
test statistic greater than 100.0.  This is strong 
evidence that some of the field representatives’ data 
do not follow the expected distribution.  Their data 
are suspicious, and those field representatives should 
be investigated to determine whether they are 
curbstoning. 
 
9. Conclusion 
 

Benford’s Law is a simple and powerful tool that 
can be used to help identify possibly fraudulent or 
error-prone survey data in many settings, including 
sample surveys.  It is important to identify incorrect 
survey data because the accuracy of any survey’s 
results depends on the accuracy of the collected data. 

Although Benford’s Law was first discovered 120 
years ago, it has been rapidly gaining popularity over 
the past decade.  Its new-found popularity is mostly 
in the accounting and auditing industries, but there is 
great potential for its use in the field of sample 
surveys as well.  In fact, the universality with which 
it applies to nearly every “real world” data set is one 
of its more curious and powerful aspects. 

Although Benford’s Law can be a powerful tool in 
identifying falsified survey data, we hasten to point 
out that it really only identifies unusual data.  As with 
any statistical or quality control tool, after the 
unusual data have been identified they must be 



 

examined to determine whether or not they are 
accurate.  Benford’s Law is a potentially powerful 
tool that can be added to other quality control tools 
used in the world of surveys to increase the accuracy 
of the data. 
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