Balancing respondent confidentiality and data user needs

Consumer Expenditure Survey

Arcenis Rojas

What is the crux?

Conflicting goals

- ► Maximize data access
- Protect respondents identity

Why is confidentiality important?

- Ensure future cooperation by respondents
- It's the law

Title 13?

Federal law to protect identities of survey respondents

Who determines threats?

Disclosure Review Board (DRB) by the U.S. Census

How could microdata reveal respondents' identity?

- High income
- High expenditures
- High age
- Small PSUs

Conceal information that *could* reveal respondents

Two stages:

- Census removes obvious identifiers
- BLS suppresses *data related* identifiers

- **Top-code**: Provide average of expenditures above threshold
- Re-code: Change metadata but provide numerical data
- Suppress: Delete numerical data or entire record

- **Top-code**: Provide average of expenditures above a threshold
- Re-code: Change metadata but provide numerical data
- Suppress: Delete numerical data or entire record

How do we topcode?

- Determine critical value
- Find values exceeding critical value
- Average values exceeding critical value
- Replace values with top-coded values

How to determine critical values?

Percentiles:

- ▶ Population & expenditure: 99.5 %
- ► Sample: 97 %

Outside sources:

If sample differs from population

Distribution in Sample

Distribution in Population

- Top-code: Provide average of expenditures above a threshold
- Re-code: Change metadata but provide numerical data
- Suppress: Delete numerical data or entire record

How do we recode?

- Find values that meet criteria
- Determine method:
 - ► Generalize info
 - ► Change info
- Replace original metadata with recoded metadata

Re-code: Generalize information

- Broaden production year of cars
 - ► From Toyota Corolla 1999
 - ► To Toyota Corolla 1990s

Re-code: Change information

- Change data to comparable data
- Change respondents' age over 82 to 87

- Top-code: Provide average of expenditures above a threshold
- Re-code: Change metadata but provide numerical data
- Suppress: Delete numerical data or entire record

Suppress

Delete the reported data or delete the entire record

How to suppress?

- Blank out numerical value but maintain metadata
- Erase entire record

Suppression

Blanking numerical data

- ► Blank values of normal but infrequent purchases
- Example: Specialized mortgages

Suppression

Complete eradication

- ► Erase entire record
- ► Example: Airplane purchase

Reverse engineering

$$5 = 3 + X$$

Reverse engineering

Prevent the use of available information to deduce protected information

How to prevent reverse engineering?

- Find protected values
- Protect them in all locations
- Protect related values

Reverse engineering

Scenarios

- ► Within file
- ► Across files

+ taxes

■ Income = Wage

 $\blacksquare 1000 = 800 + 200$

 $\blacksquare 1000 = 750 + 200$

= 950 = 750 + 200

■ Critical value: 700

■ Income = Wage

+ taxes

■ 1000 = 800

+ 200

■ 1000 = 750

+ 200

■ 950 = 750

+ 200

Critical value: 700

■ Income = Wage

+ taxes

1000 = 800

+ 200

■ 1000 = 750

+ 200

■ 950 = 750

+ 200

Critical value: 700

■ Income = Wage + taxes

 $\blacksquare 1000 = 800 + 200$

 $\blacksquare 1000 = 750 + 200$

= 950 = 750 + 200

Critical value: 700

Reverse Engineering: Across Files

Income

Topcoded income in FMLI

=> Topcode associated UCC in ITBI

Expenditure

Topcoded expenditures in EXPN/FMLI

=> topcode associated UCC in MTBI

How do we document?

Flag the values

►T: Topcoded value

▶ **D**: Valid value

What percentage of data points changed?

- Un-weighted impact:
- Weighted impact:

Impact on trends?

■ No: ??????

■ Small: ??????

■ Large: Area and income extremes

Arcenis Rojas

(202)-691-6884 Rojas.Arcenis@bls.gov

Next presentation...

