Projects 6 & 7: Generating Weighted Average Annual Education Expenditure and Standard Error

Project 6

So far – we've only looked at sample estimates. Instead, we want to look at *population* estimates. We'll calculate the education means based on the composition of the household

In this project you will:

- Learn about weighting in the CE
- Calculate collection year population estimates

Weight – FINLWT21

The sum of FINLWT21 each quarter equals the U.S. Population (in CUs).

■ The sum of FINLWT21 for four quarters equals 4 times the U.S. Population.

■ FINLWT21 is the starting point for calculating expenditure weights and population weights

Expenditure Weights

Basic definition: The expenditure weight is the number of similar CUs that a CU represents in any given quarter. It is the weight used when aggregating to expenditure totals.

FIRST LOOK: QUARTERLY WEIGHTS AND ESTIMATES

Population

Quarter 1 Population: 24 CUs

Sample

Quarter 1 Sample: 3 CUs

CU	Quarterly Expenditure	Weight	Weighted Quarterly Expenditures
Joness	\$3,500	8	\$28,000
Browns	\$2,000	7	\$14,000
Jenkins	\$8,000	9	\$72,000
POPULATION		24	\$114,000

CU	Quarterly Weight Expenditure		Weighted Quarterly Expenditures	
Joness	\$3,500	8	\$28,000	
Browns	\$2,000	7	\$14,000	
Jenkins	\$8,000	9	\$72,000	
POPULATION		24	\$114,000	

POPULATION

24

\$114,000

Weighted quarterly average: \$114,000 / 24 = \$4,750

SECOND LOOK: ANNUAL WEIGHTS AND ESTIMATES

Population

Annual Population: 27 CUs

Sample

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual aggregate: 114,000+110,400+116,200+125,000 =\$465,600

Annual Estimates

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000

Annual mean: Annual Aggregate / population = \$465,600 / ???

Quarter 1	Population	Quarterly weighted aggregate
Quarter 1	24	\$114,000
Quarter 2	26	\$110,400
Quarter 3	28	\$116,200
Quarter 4	30	\$125,000
		\$465,400

Annual mean:

Annual Aggregate / average population = \$465,400 ÷ ((24+26+28+30)/4) = \$465,400 ÷ 27

= \$17,237

Calculating a Standard Error

- To compute actual standard errors, use all 44 replicate weights (WTREP01-WTREP44) and FINLWT21.
- Use the same process just described for creating a mean, but do it 44 times, once for each replicate weight.
- Create a new variable that sums the squared difference between each of the replicate means (WTREP01-WTREP44) and the actual mean
- Calculate standard error

Project 6 Steps

- Multiply quarterly education expenditures by FINLWT21 to obtain weighted aggregates (*NOT the annualized education expenditures!*)
- 2. Create population weights by dividing FINLWT21 by the number of quarters in our sample (4)
- 3. Aggregates: Sum the weighted estimates by each group
- 4. Populations: Sum the population weights by each group
- 5. Means: Calculate annual means for each of the group by dividing the aggregates by the populations
- 6. Create a new variable that sums the squared difference between each of the replicate means (WTREP01-WTREP44) and the actual mean:

$$dif f_{total} = ((m_1 - m_0)^2) + ((m_2 - m_0)^2) + ((m_3 - m_0)^2) + ((m_4 - m_0)^2) + \cdots + ((m_n - m_0)^2)$$

7. Calculate the Standard Error

$$n=44$$

$$SE = \sqrt{\frac{dif f_{total}}{n}}$$

Project 7

Calculate the <u>calendar year</u> education mean by the number of children in the household for the US population in 2018

In this project you will:

- Learn about calendar year versus collection year in CE
- ► Calculate calendar year population estimates using expenditure data from MTBI

Calendar Year Estimates

Two Main Differences:

- Use 5 quarters of data, but only select months that fall in the calendar year (Numerator)
- Population weights are adjusted based on the number of months in the calendar year the CU could report (Denominator)

Population Weights

- Need another adjustment to FINLWT21
 - Adjust weights based on the number of months that could have been included
 - ► MO_SCOPE: "Months in Scope"

MO_SCOPE

Quarter 1 (FMLI181x)					
Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	March 2018
			0		
			X	1	
			X	X	2

Quarter 5 (FMLI191)					
Oct 2018	Nov 2018	Dec 2018	Jan 2019	Feb 2019	March 2019
X	Х	Χ	3		
	Х	Χ		2	
		Х			1

MO_SCOPE

Quarter 2 (FMLI182)					
Jan 2018	Feb 2018	March 2018	April 2018	May 2018	June 2018
X	X	X	3		
	X	X	X	3	
		X	X	X	3

Population Weights

- Multiply FINLWT21 by MO_SCOPE / 3
- Still need to adjust to account for quarterly weights, so divide by 4.
- ...wait did you say 4?? But I'm using 5 quarters?!

Yes...but you're really only using 1/3 of the first quarter and 2/3 of the fifth quarter. So, dividing by 4 is easier then saying divide by:

$$(1/3)*1 + 1 + 1 + 1 + (2/3)*1 = 4$$

Quick Guide to Adjusting Population Weights

FMLI181x	POPWEIGHT = FINLWT21 [(QINTRVMO-1)/3]/4
FMLI182	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI183	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI184	POPWEIGHT = FINLWT21 (3/3) / 4
FMLI191	POPWEIGHT = FINLWT21 [(4-QINTRVMO)/3]/4

Expenditures in Scope

- REF_YR
 - ▶ Identifies the reference year of the expenditure
- REF_MO
 - ▶ Identifies the reference year of the expenditure

Project 9 Steps

- 1. Append all five quarters of MTBI data.
- 2. Create calendar year education expenditures:
 - For each NEWID, create an EDUCA variable by summing the following UCC's, if REF_YR = 2017:
 - Tuition: 670110, 670210, 670410, 670901
 - Test: 670903
 - Books: 660110, 660210, 660410, 660901, 660902
 - Other: 67092
- 3. Append all five quarters of FMLI data
- 4. Merge FMLI and MTBI
- 5. Create weighted expenditures by multiplying EDUCA by FINLWT21
- Create population weights using months in scope (MO_SCOPE)
- 7. Aggregates: Sum the weighted expenditure by number of children
- 8. Populations: Sum the population weights by number of children
- 9. Means: Calculate annual means for each of the group by dividing the aggregates by the population weights by number of children

