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Abstract 
In the Current Population Survey (CPS), replication methods are used to calculate 
variances of survey estimates. Since these are often noisy, generalized variance functions 
(GVFs) are used to produce published estimates of variance that are more stable over time. 
Recently, the calculation of GVF model parameters has been reconfigured in the CPS. 
Rather than cluster series and create interdependencies among variance estimates, the 
parameters for each series are calculated individually, based only on their own histories. 
Instead of an iterative refitting, a single model is constructed for each historical series, 
smoothing out the noisiness of replicate variances while retaining seasonality. This paper 
details these changes to the GVF model framework and presents the resultant 
improvements in CPS published variance estimates. 
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1. Introduction

In complex, expansive surveys, the problem of producing accurate and efficient variance 
estimates associated with survey statistics cannot always be addressed by direct 
computation. Design-based variance estimators may not be available or easily obtained for 
complex survey statistics2. For large surveys, particularly those that make public-use data 
files available, anticipating all possible combinations of interest to data users is impossible. 
The reasons for this difficulty in the calculation and presentation of variance estimates are 
well-known and discussed in salient literature; see Wolter (2007). Replication methods 
address the issue of the estimation of variance of complex survey statistics, but these 
techniques are computationally intensive and tend to be noisy. Generalized variance 
functions (GVFs), which fit models relating estimates of variance to the expected values 
of their associated survey statistics, address the issue of expansive surveys; i.e., GVF 
models can be easily and efficiently applied to a large volume of potential survey statistics. 
Additionally, GVFs tend to smooth out the noisiness that may be present in the underlying 
data. The intersection of replication methods and GVFs, then, offers an attractive 
framework for handling the problem of variance estimation in complex, expansive surveys: 

1 Views expressed are those of the author and do not necessarily reflect the views or policies of the 
Bureau of Labor Statistics. 
2 In the context of this paper, the ambiguous term "complex survey statistics" is inclusive of both 
the situation of the complex form of an estimator, such as ratios or composite estimators, and the 
situation of a simple estimator, such as Horvitz-Thompson, computed from a complex sample

design. 



1. Compute replicate variance estimates for a (preferably large) primary set of survey
statistics.

2. Fit GVF models and publish model parameters relating the variance estimates to
the survey statistics.

3. Approximate variances for secondary statistics by selecting model parameters
from the most similar primary statistics.

Indeed, the Current Population Survey (CPS) has utilized this approach since 1947. Its 
motivation and additional details are discussed in Technical Paper 66 (2006). 

The complex CPS sample design incorporates stratification by state, clustering of counties 
into self-representing and non-self-representing primary sampling units (PSUs), and 
systematic sampling of households within selected PSUs. Selection probabilities, and 
therefore basic sampling weights, differ by state, and to increase precision for certain 
estimates of change a monthly 4-8-4 rotation scheme is applied: sampled households are 
interviewed for four months, excluded for the next eight months, and interviewed again in 
the subsequent four months. Extensive household data is collected from survey 
respondents, including but not limited to information about employment, income, 
occupation, education, age, race, ethnicity, veteran status, disability, and nativity. 
Thousands of survey statistics can be calculated from the data, and public-use data files are 
made available.  

In conjunction with the CPS sample design, the method of successive difference replication 
is used to construct the replicate weight files necessary for computation of variance 
estimates (Fay and Train, 1995). The creation of micro-level replicate weights is itself a 
complicated process; for the purpose of this paper, it shall be assumed that the national-
level (as opposed to state-level) variance estimates computed via the replicate weight files 
are generally unbiased.  

2. GVF Models

The generalization method utilized by the CPS is relevant to series that can be characterized 
as binomially distributed, such as counts of employed and unemployed from the civilian 
noninstitutional population (CNP), as well as associated rates. Valliant (1987) gives 
conditions for a class of models that supports non-binomial series, as well. Only the 
binomial case is considered in this paper, as it is most relevant to the Current Population 
Survey.  

Given a survey statistic �̂�, such as total employed or unemployed, a GVF of the following 
form is used to estimate its variance: 

𝑉(�̂�) = 𝑎�̂�2 + 𝑏�̂� (1) 

The subject of the methodological change affecting the estimation of CPS variances, the 
calculation of model parameters a and b is the focus of the paper and will be subsequently 
discussed in Sections 2.1 and 2.2. The final model (1) is unchanged, reflecting both the 
survey complexity and the underlying binomial properties of the objective series: 
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with GVF model parameters 

𝑏 = 𝑁𝛿 𝑛⁄

𝑎 = −𝛿 𝑛⁄ = −𝑏 𝑁⁄ . 

to yield the GVF form given in (1). 

When N is a control total (i.e. constant), provided by the Census Bureau and utilized in 
benchmarking, the estimated variance of �̂�  will be zero when �̂� = 𝑁  or �̂� = 0 , 
conforming to the properties of the binomial distribution. 

2.1 Historical Parameter Estimation 
Until 2015, the method used to estimate GVF parameters had three primary characteristics: 

1. Relative replicate variance as the dependent variable
2. Iterative, weighted least squares regression as the modeling technique
3. Grouping, or clustering, across series to borrow strength cross-sectionally

The a and b parameters from (1) were estimated from this weighted least squares regression 
model relating relative variance to the survey statistic for all series within a given cluster: 

𝑉(�̂�)

�̂�2
= 𝑎 + 𝑏�̂�−1 

The inverse of the expected variance was used as the vector of series weights for this 
regression model. Since the expected variance resulting from the model changed after the 
model was fit, the process was iterated, with the weights being recalculated each time.  

Wolter (2007) shows examples of how this form can be effective with respect to the relative 
variance, which is presumed to be stable over time. The accuracy of fit utilizing this GVF 
model tends to rely upon the adequacy of the clustering relative to the similarity of the 
series' variance properties, such as design effects, which can be formulaically defined to 

where 

𝑁 = population (or subpopulation) total 

𝑛 = sample size 

𝑝 = ⁄𝑁 = estimated proportion of 𝑁 with the characteristic measured in 𝑋 

𝛿 = design effect, defined as ratio of replicate variance to simple random sample variance 

Expanding the numerator terms, this can be rewritten as 



Figure 1: Replicate and GVF standard errors (vertical axis) plotted against associated 
survey estimates of employed, unemployed, and not in labor force for Asian, 20 and older 
and Asian, 16 and older.  
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encapsulate weighting adjustment arising from nonresponse and multi-dimensional 
benchmarking to external population controls (a.k.a. calibration). Stated simply, the GVF 
for a series should be effective if all the series in the cluster have similar design effects. 

In practice, this method results in series grouped with others that do not meet this criterion 
of design effect similarity. Figures 1 and 2 display standard error estimates derived from 
the historical GVF model for selected Asian and Hispanic labor force characteristics 
(which were each clustered with many non-Asian and non-Hispanic series).  



Figure 2: Replicate and GVF standard errors (vertical axis) plotted against associated 
survey estimates of employed, unemployed, and not in labor force for Hispanic, 20 and

older and Hispanic, 16 and older. 

The poor fits evident for some of the displayed series are emblematic of problems with the 
historical GVFs rather than exceptional. While many perform quite well, an unacceptable 
number veer off considerably from the cloud of replicates they are intended to represent, 
and in some cases are parameterized so poorly that they produce negative estimates of 
variance. In Figures 1 and 2, for convenience of display, these are indicated by "zero" 
points along the y-intercept. The modeling problems Figures 1 and 2 reveal require little 
explication; negative estimates of variance and irrational standard errors resulting from 
them are untenable for the CPS, particularly when series of considerable interest, such as 
Asian or Hispanic labor force, are involved.  

Multiple factors can contribute to poor GVF fits. As mentioned in Section 1, dissimilarity 
of design effects between series in the same cluster can lead to biased estimates of variance. 
Additionally, these models treated the data statically, pooling together at least one year of 
monthly observations. Standard errors of totals, however, can change substantially over 
time, as the size of the CNP and relevant subpopulations grow.   

Interventions can be made when problems arise, but a more robust solution to the problem 
of poor GVF fitting was desired. 

2.2 Replicate Variance Components 
The current GVF methodology employed by the CPS was implemented in 2015. The 
framework of model (1) is still utilized, but the estimation of parameters a and b now has 
three primary characteristics differentiating it from the historical method: 
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1. The b parameter, 𝑁𝛿 𝑛⁄ , as the dependent variable, which can be viewed as the
design effect times the sampling interval (a.k.a. base weight)

2. Ordinary least squares regression as the modeling technique
3. "Grouping" within series over time to borrow strength longitudinally

The motivation for this modeling strategy is primarily drawn from the long-term stability 
but short-term volatility of the b parameter. (Stability, in this context, refers to a series that 
is well-behaved, or predictable, but not necessarily static. Trends are not precluded.) 
Empirically, it has been observed that national CPS design effects do not drastically or 
obviously change over extended periods of time, nor during periods of economic upheaval, 
such as the Great Recession of the late 2000s. Additionally, the sampling intervals have 
been quite stable over time. Any substantial changes to the national sampling interval, such 
as those resulting from significant sample maintenance reductions, are known in advance 
and can be accounted for in modeling, but that possibility will not be extrapolated upon in 
the remainder of this paper. 

On a monthly basis, the design effects are quite noisy, since they are calculated as ratios of 
replicate variance (which tend to be noisy, as indicated in Section 1) to theoretical simple 
random sample variance. The simple random sample, in this case binomial, variance 
component is much more stable; modeling the design effect component, which is included 
in the b parameter, appealingly mitigates the short-term volatility while leveraging 
predictable long-term behavior. Figure 3 overlays these two components to visually 
express their relative stability for variance estimates of total persons in the civilian labor 
force. 

Figure 3: Decomposition of civilian labor force replicate variance into "binomial" [Np(1-
p)] and "design effect" [Nδ/n] components. The design effect component is on the 
secondary (right-hand) scale. 
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𝜙𝑡 =
(𝜙𝑡 − 𝜙)

𝜙

𝑁𝑡 =
(𝑁𝑡 −𝑁)

𝑁

where T is the number of months in the series history (up to 120), and 

𝜙 =
1

𝑇
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𝑇
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In Figure 3, it is observable that the binomial component is stable, while the design effect 
component is volatile short-term and fairly flat long-term (indicating little change of the 
"true" underlying design effect). Considering these are multiplicative factors, the volatility 
of the design effect component impels the volatility of the replicate variance estimate. 
Smoothing out the design effect component's short-term volatility is therefore the modeling 
objective for the GVF. 

2.3 Single-Series Parameter Estimation 
It was observed in Section 2.1 that combining series with dissimilar design effects can lead 
to poor estimates of variance. It was further observed in the decomposition in Figure 3 how 
the design effect within a series does not change much long term. A single-series model 
that avoids clustering and interdependencies altogether, leveraging the long-term stability 
of a series' variance components, offers some advantages over the historical method. 
However, Figure 3 also emphasizes what is theoretically known about the binomial 
variance component: it changes as the population changes over time. Thus, a single-series 
model, necessarily dependent upon a substantial longitudinal history, must account for 
population dynamics. Omission of the changing population results in GVF parameters only 
accurate for the center of the time history used in the model fit.  

All these concepts informed the construction of a new GVF model for the estimation of a 
and b parameters. This model assumes that historical growth rates for relevant 
subpopulation groups in the U.S. accurately reflect future growth rates. The resulting GVF 
parameters tend to produce variance estimates robust against mild to moderate projection 
errors. Large projection errors relative to the size of the subpopulation lead to more 
substantial bias in the GVF variance estimates. Most series in the primary CPS tables do 
not have large subpopulation projection errors when using this method. 

Given up to a 10-year series history of monthly (t) variance estimates, an ordinary least 
squares regression model that accounts for population growth is constructed. 

Let: 

𝜙𝑡 = 𝑁𝑡𝛿𝑡⁄𝑛𝑡 
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Then construct the following zero-intercept regression model based on the sample data: 

�̂�𝑡 = �̂�𝑁𝑡 = �̂�𝜙,𝑁 (
�̂�𝜙

�̂�𝑁
)𝑁𝑡 

where 

�̂�𝜙,𝑁 = series correlation between 𝜙𝑡 and 𝑁𝑡 

(
�̂�𝜙

�̂�𝑁
) = ratio of standard deviations of predictor and dependent variables 

This model can then be expanded to yield an estimated value for the b parameter from 
model (1): 

𝑏 = �̂�𝑡 = 𝜙 + 𝜙 [�̂�𝜙,𝑁 (
�̂�𝜙

�̂�𝑁
)]
(𝑁𝑡 −𝑁)

𝑁

If the correlation between the design effect component and subpopulation size is zero, then 
the b parameter is equal to 𝜙 for all months. Otherwise, the b parameter changes as the 
population changes. For projecting future parameters, the subpopulation projection is used 
in place of the actual population value, as discussed above.   

Since this model still conforms to (1), the a parameter is defined in relation to b: 

𝑎 = −𝑏 𝑁⁄

The model in this section relates to variances of levels, such as total employed or 
unemployed. The parameters for rates are developed analogously, assuming that the 
additional denominator (base) term of the binomial variance is a constant. In practice, this 
is only true when the base is a fixed population control. Many CPS rate statistics have 
random variables in the denominator, but empirical review suggests that treating them as 
constants has negligible impact for most variance estimates. 

3. Results

CPS tables A1 through A16, available at www.bls.gov/cps, contain over 600 series of 
primary importance in the development of an alternative GVF methodology. Figures 4 - 8 
show selected series with varying properties.  

Thorough review of the model fits for these series has shown accuracy across the historical 
data used for model construction and in projecting future parameters. Further, this GVF 
model reflects the natural seasonality of unadjusted series, for which they are developed. 
Evans, McIllece, and Miller (2015) showed that the impact of seasonal adjustment on 
variance is not negligible for some primary labor force series, but currently all GVF 



Figure 4: Replicate, model, and projected standard errors (in thousands) for civilian labor

force. Not seasonally adjusted. 

In Figure 5, the standard errors for Hispanic or Latino employment (16 years and over), a 
series that was among those poorly parameterized in the historical method because of 
ineffective clustering (see Figure 2), are accurately reflected by single-series parameter 
estimation.  

Figure 5: Replicate, model, and projected standard errors (in thousands) for Hispanic or

Latino employment. Not seasonally adjusted. 
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parameters are constructed from the unadjusted series. The GVF model developed in this 
paper naturally extends to an analogous application using seasonally-adjusted data, insofar 
as replicate variance estimates for the seasonally-adjusted series are available.  

In Figure 4, the replicate standard errors of civilian labor force (16 years and over) 
estimates show a great deal of monthly and yearly volatility. The GVF parameters, 
calculated over the 2004 to 2013 sample data and projected forward for 2014, smooth out 
this undesirable noise. Note that the spike in April 2014 is artificial, not economic, resulting 
from the beginning of the phase-in of the 2010 sample from the 2000 sample.  



Figure 6: Replicate, model, and projected standard errors (in thousands) for 
unemployment rate. Not seasonally adjusted. 

Figures 4 - 6 are for large series, but the GVF models must be effective for smaller series, 
as well. Figure 7 displays standard errors for the percent of persons in the civilian labor 
force unemployed at least 15 weeks. The model again accurately reflects the series, 
including tracking the surge during the Great Recession as more people were long-term 
unemployed. As in the prior figures, the projection forward fits the trend observed from 
the replicates. 

Figure 7: Replicate, model, and projected standard errors (in percent) for unemployed 15

weeks and over, as a percent of civilian labor force. Not seasonally adjusted. 
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Figure 6 displays the standard errors of the official unemployment rate. Seasonality is more 
easily observed; the model, fit on the non-seasonally adjusted series and adhering to the 
binomial properties underlying the data, reflects the seasonality. The sharp increase in 
standard errors resulting from the Great Recession (and gradual decrease since) are evident 
and modeled accurately. Periods of economic change could be problematic in the historical 
method, which relied on data from a relatively short period of time.  



Figure 8: Replicate, model, and projected standard errors (in percent) for job losers on

layoff, as a percent of total unemployed. 

The model fits of these series are indicative of the general quality of fits for the 600+ series 
in tables A1-A16. Due to the overall accuracy of the model standard errors, the single-
series parameter estimation was found to be an acceptable replacement for the historical 
method of clustering and iterative refitting. Continuing work includes parameter estimation 
for additional series and developmental research of GVFs to effectively model the standard 
errors for non-binomial series, such as means and medians. 
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