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1   Background 
 
The Bureau of Labor Statistics (BLS) Quarterly Census 
of Employment and Wages (QCEW) is a census that 
collects data under a cooperative program between BLS 
and the State Employment Security Agencies. The data 
contain broad employment and wage information for all 
U.S. workers covered by state unemployment insurance 
laws and federal workers covered by the 
Unemployment Compensation for Federal Employee 
program. Tabulations of QCEW outcomes are available 
by 6-digit North American Industrial Classification 
System (NAICS) industry, by county, by ownership 
sectors and by size groups, in the form of print, 
automatic e-mail, fax or plain text file directly from 
BLS Internet ftp servers. The detailed coverage and 
readily availability of the QCEW tabular data make it 
especially vulnerable to confidentiality disclosure risks. 
Cell suppression (CS) is used for the tabular data 
confidentiality protection schema.  
 
Since cell suppression methods currently implemented 
suppress a large number of cells in order to protect 
QCEW publication tables, an alternative method is 
sought. Using QCEW data analyzed in this paper, 
following the BLS confidentiality sensitivity measures, 
we found for this data set containing employment of 
five major industry sectors (2-digit NAICS sectors) 
within a medium-sized U.S. State, 9979 or 59% of 
16,878 publication cells have to be completely 
suppressed using network method, 10631 or 62% of all 
cells using the hypercube method (for a description of 
the hypercube method see Repsilber (1994)). The level 
of employment represented by the suppressed cells is 
relatively small in comparison to the number of cells 
suppressed, ranging from 10% to 15% of the total 
value. Similar results of this magnitude for cell 
suppression have been also reported by other 
researchers. Much detail on industry employment 
distribution at various geographic levels and other 
cross-classifications is lost due to confidentiality 
protection 
 
2  Cell Estimates as Fixed Intervals 
 
One alternative to complete suppression considered by 
QCEW would be to publish primary sensitive cells in 
pre-defined, fixed intervals (FIs). Instead of suppressing 

the value of the sensitive cells, this method would 
publish all primary and secondary  suppression cells in 
FIs which contain the exact value of the sensitive cell 
value. The consistency of the definition of these pre-
defined intervals is kept across tables so that the users 
can compare values between various industries, 
geographic locations and other classifications by 
establishment characteristics, by just looking at the 
intervals.  
 
Similar to the issues surrounding the cell suppression 
problem (CSP), if QCEW data is published by replacing 
primary and secondary suppression cells with FIs, to 
prevent outside intruders gaining identifiable 
information of individual contributors to a cell, 
additional protecting cells (PCs) may have to be 
published in FIs. Otherwise an intruder may be able to 
utilize this additional information and the additive 
relationships existing in the table to estimate the value 
of primary cells now in FIs and therefore the value of 
some contributors to the cell. Intruders can produce 
better estimates now than before with the added 
information of published FI bounds. The problem of 
minimizing the amount of cell values now expressed in 
FIs by selecting the right set of PCs while still 
preserving the protection of primary cells is what we 
call the fixed interval publication problem (FIPP). We 
will use the following fixed interval ranges for 
employment levels: 0-19, 20-99, 100-299, 250-499, 
500-999, 1000-2499, 2500-4999, 5000-9999, 10000-
24999, 25000-49999, 50000-99999, 100000 or more.  
 
Since this risk arises from the additive relationships in 
the table and is similar to CSP solutions that have been 
implemented in some BLS survey programs, we start 
searching solutions made to solve CSP. Our current 
knowledge indicates CSP problem has been established 
by researchers as a mixed integer linear program 
(MILP) problem, see Kelly (1990). Exact solution to 
MILP model belongs to the class of the strong NP-hard 
problem. Heuristic solution procedures such as the 
network flow method, see Cox (1980 and 1995), for 2-
dimensional tables, multi-commodity network flow 
method for n-dimensional tables, see Castro and 
Nabona (1996) and hypercube method by Repsilber 
(1994) and Giessing (2001) have been proposed. These 
heuristic methods only provide sub-optimal solutions as 
pointed by Castro (2001). Fischetti and Salazar (1999) 
proposed a solution using branch-and-cut algorithm as 
one of the mathematical programming techniques to 
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reach a solution with proven optimality on 2-
dimensional tables with up to 500 rows and 500 
columns. The problem is solved in a few minutes on a 
standard PC. Fischetti and Salazar-Gonzales (2000) 
extended their work to other tabular data including k-
dimensional table with k>2, hierarchical tables, linked 
tables etc., using branch-and-cut based procedures. 
Alternatively, instead of completely suppressing table 
cells, Salazar (2001); Fischetti and Salazar (2003) 
proposed a “partial cell suppression” method that will 
publish a subset of table cells with variable estimation 
intervals. Though FIPP and CSP shares the same MILP 
model, unfortunately, so far we think all of the above 
mentioned secondary cell selection methods do not 
apply directly to selecting protecting cells (PCs) that are 
to be published in FIs, neither optimally nor 
heuristically. The reason is that these models can not 
accommodate the knowledge of the FI bounds.  
 
3. Selection Improvement Algorithm 

In previous research, Cohen and Li (2005) have proposed 
an iterative “selection-improvement” algorithm, which 
improves cell selection upon each previous step until all 
primary cells are sufficiently protected. The iterative 
selection-improvement algorithm has two stages at each 
iteration, (1) selecting primary and secondary PCs and 
replacing them with FIs; and (2) conducting an audit on 
the publication table with the newly selected PCs in FIs. If 
the audit finds any primary cell is still at risk, the 
algorithm re-iterates by selecting more PCs and 
conducting another audit until all primary cells are 
protected. The initial set of PCs is the set of cells selected 
through one of the CSP methods. In case the iterations fail 
at the end, i.e. no candidate PCs available for selection 
while there are still unprotected cells, the method defaults 
back to the usual CSP solutions targeting only the 
remaining exposed cells.  The steps involved in the 
selection improvement algorithm follow: 

 
Step 1.  Identify primary and secondary cells in a 

table via a CSP method and publish them 
in pre-defined FIs.   

Step 2.  Apply linear constrained optimization to 
identify those primary cells with 
disclosure risks.  

Step 3.  For those primary cells at risk, select 
additional cells that have not been 
selected previously from the publication 
table and publish them in FIs. Three 
specific methods are proposed for this 
research and will be briefly described in 
following paragraph and sections. This is 
the ‘selection step”. 

Step 4.  Apply linear constrained optimization 
again to check if any primary cell in the 
original table is still at risk. If yes, return 
to step 3; otherwise EXIT the algorithm, 

the table is successfully protected. This is 
the “audit step”. 

Step 5.  If the step 2 – 4 iteration fails to protect 
every primary cells, i.e. no further 
unsuppressed cells available for selection 
while there are still disclosed primary 
cells, use any solution method to CSP, 
i.e. completely suppress these exposure 
primary and corresponding secondary 
cells. 
 

 
There are several alternative methods can be used to 
select additional PCs in Step 3. We can randomly select 
cells that are within the same row or column of the 
exposed primary cells, or we can select through more 
complex MILP models and mathematical programming 
techniques. We would like to minimize either the 
number of cells to be selected or the total value of the 
selected cells. We studied the following three methods 
in the selection step: the Systematic, Single-Source 
Shortest Path (SSSP) and the Random Selection 
methods in Cohen and Li (2005):  
 

1. Systematic Method. To minimize values 
published in fixed intervals, this method 
selects the smallest cell among all cells that 
form additive relationship with two selected 
exposure cells that need further protection that 
has not been suppressed during the previous 
iteration(s). This cell is published as a pre-
defined FI. Default to Random Selection 
Method (see 3 next) at the end if this method 
fails. 

 
2. Single-Source Shortest Path (SSPS) Method. 

This method models the table as a network 
similar to Travelling Salesman’s Problem 
(TSP), treat all primary exposure cells on a 
table as destinations of a travelling map. The 
method aims to find the shortest path through 
these destinations, to minimize the total cell 
values expressed in FIs. To make this TSP 
solvable for all tables, the method fixes the 
order of the destinations or vertices on the 
table network. The method only needs to find 
the shortest path connecting the order-fixed set 
of vertices to form a closed “loop” with 
minimized path. Publish all cells that are not 
already selected in previous iterations on the 
chosen loop in FIs. Default to Random 
Selection Method if this method fails at the 
end. 

 
3. Random Selection Method. This method 

randomly selects a cell among all cells that 
form additive relationship with the primary 
exposure cells. The candidate cells are cells 
that are either in the same row or column as 
the primary cell. If all cells forming additive 

 
 



relationships are already selected during 
previous iteration(s), or it by itself is the only 
decent from the higher hierarchy, go one 
hierarchy step higher until additional 
protecting cells can be found through additive 
relationships. Randomly select protecting cells 
among the candidates, publish these and all 
cells along the hierarchical searching path as 
FIs. 

 
 
 
Table 1a displays a portion of a current publication 
table currently a user sees in BLS publications. In this 
table the cells marked with “x” are suppressed cells due 
to primary and secondary suppressions.  Table 1b 
shows the results of the selection-improvement 
algorithm. 
 
4. Noise Model 
 
For estimation based upon a noise model, Evans, Zayatz 
and Slanta (1998) proposed a disclosure limitation 
technique for establishment magnitude tabular data 
based upon a noise model. The noise model distorts 
every data element by some minimum amount. For a 
given report all data are always disturbed in the same 
direction (increased or decreased.) 
 
Specifically, each record is perturbed by introducing p 
% noise onto each establishment’s values. To perturb an 
establishment’s data by p % we multiply its data by a 
number that is close to 1.0 +/- p %. The exact multiplier 
is chosen from a distribution centred at 1.0 +/- p %. 
Both the value of p and the distribution used should be 
considered agency confidential. The same identical 
distribution must be used at both ends.  Multipliers 
should be assigned randomly, both whether elements 
are going to be inflated or deflated and the exact 
multiplier value chosen from the distributions centred at 
1.0 +/- p %.  Under this model it can be shown that the 
estimates are unbiased.  
 
An example from the Evan/Zayatz/Slanta paper shows 
how the model would work: 

 
Company Establish- Direction Multiplier 
 ment   
Company A  1.1  
 A1  1.12 
 A2  1.09 
 A3  1.1 
 A4  1.11 
    
Company B  0.9  
 B1  0.89 
 B2  0.93 
    
Company C  1.1  
 C1  1.08 

 
It should be noted that it is BLS practice to evaluate 
disclosure limitation at the company level. Thus, all 
establishments in a sensitive cell from a single company 
must all be perturbed in the same direction.  Note that 
for certainty units the weight becomes the multiplier 
and for non-self representing units the weight is 
[multiplier + (weight – 1)]. 
 
 
5. Measures of Data Utility 
 
The tradeoffs between data utility and disclosure have 
been extensively studied by Duncan et Al (1999). 
Basically, minimizing disclosure risk increases data 
loss. Data utility can be defined as a measure of the 
value of information to a legitimate data user. In this 
section we will propose to measure the amount of data 
loss due to confidentiality protection using FI or the 
noise model. Information in tabular data is clearly lost 
with cell suppression, FI and estimates produced under 
the noise model. Some data recovery is possible by 
applying linear program techniques to get bounds on 
suppressed cells or tighter bounds on FI given the data 
released. Data loss of FIs as a disclosure avoidance 
protection will compared to cell suppression which we 
assume to be the gold standard for data protection. 
 
The aim is to measure the amount of information loss 
that is to be accepted by the data user accessing the 
published tables compared to the actual estimates not 
released.  
 
A sophisticated data user knows that bounds can be 
placed on suppressed cells via linear programming 
using the information released. Similarly, tighter 
bounds on FIs than published by a statistical agency can 
be determined using the data released. For each cell 
protected by cell suppression or FI we will determine 
the minimum and maximum value possible for a cell 
given the table structure produced. The information loss 
statistic will be computed. Various aggregations will be  

 
 



 
Counties of a U.S. State NAICS 

code Total County 
1 

County 
2 

County 
3 

County 
4 

County 
5 

County 
6 

County 
7 etc. 

… … … … … … … … …  
… … … … … … … … …  

451 13940 113 1758 2691 111 X 241 64  
4511 9070 82 1121 1699 x X 166 x  

45111 4187 26 703 773 89 - 51 51  
451110 4187 26 703 773 89 - 51 51  
45112 2648 x 274 451 x X x -  

451120 2648 x 274 451 x X x -  
45113 1237 x 110 302 - X x x  

451130 1237 x 110 302 - X x x  
45114 998 x 35 173 - - 38 x  

451140 998 x 35 173 - - 38 x  
4512 4870 31 637 992 x - 75 x  

45121 3415 x 504 444 x - x x  
451211 3193 x x 438 x - x x  
451212 222 x x 6 - - - x  
45122 1455 x 133 548 x - x -  

451220 1455 x 133 548 x - x -  
… … … … … … … … …  
… … … … … … … … …  

Total 1166388 15589 98129 190226 7524 5018 22485 12171 etc. 
          
"x" are nondisclosable data due to primary and secondary suppressions 

Table 1a. A sample evaluation data set as published 
perturbed for confidentiality 
 
 

Counties of a U.S. State NAICS 
code Total County 

1 
County 

2 
County 

3 
County 

4 
County 

5 
County 

6 
County 

7 etc. 

… … … … … … … … …  
… … … … … … … … …  

451 13940 113 1758 2691 111 0-19 241 64  
4511 9070 82 1121 1699 20-99 0-19 166 20-99  

45111 4187 26 703 773 89 - 51 20-99  
451110 4187 26 703 773 89 - 51 20-99  
45112 2648 0-19 274 250-499 0-19 0-19 0-19 -  

451120 2648 0-19 274 250-499 0-19 0-19 0-19 -  
45113 1237 0-19 110 302 - 0-19 20-99 0-19  

451130 1237 0-19 110 302 - 0-19 20-99 0-19  
45114 998 20-99 20-99 173 - - 38 0-19  

451140 998 20-99 20-99 173 - - 38 0-19  
4512 4870 31 637 992 0-19 - 75 0-19  

45121 3415 20-99 504 444 0-19 - 20-99 0-19  
451211 3193 20-99 250-499 438 0-19 - 20-99 0-19  
451212 222 0-19 20-99 6 - - - 0-19  
45122 1455 0-19 133 548 0-19 - 20-99 -  

451220 1455 0-19 133 548 0-19 - 20-99 -  
… … … … … … … … …  
… … … … … … … … …  

Total 1166388 15589 98129 190226 7524 5018 22485 12171 etc. 

          

Table 1b. The same section of the evaluation data set 
as it is published under FIPP method 

 
 



tabulated to compare information loss for FI data 
compared to the gold standard for tabular disclosure 
protection: cell suppression. 
 
For the noise model, no additional techniques will 
improve the estimates of the cell values. However, 
information loss can still be calculated. 
 
Some notation: 
 

ij
mX : mid-point between published upper and lower 

bound, 
 ' ij
mX : optimized mid-point. Mid-point between   

and , where in the case of fixed interval 
publication: 

lF

uF

 

lF = max (feasibility lower bound, published 
lower bound), and  

uF = min (feasibility upper bound, published 
upper bound); 
 

And in the case of complete suppression: 

lF = feasibility lower bound, and  

uF = feasibility upper bound; 
 
 

 '' ij
mX : non-optimized mid-point. Mid-point between 

  and , where in the case of fixed interval 
publication: 

lF uF

 
 

Xn ij : Cell value aggregated from using micro data 
            perturbed by the noise model 
 

ij
oX : actual value of cell ij. 

 
Then, for a two-dimensional table with I rows and J 
columns, let denotes the percent information loss 
per cell attributed to the ij

ijPIL
th publication cell in the table, 

defined  as: 
 
A) Minimal information loss (%) obtained by a 

sophisticated data user by applying linear 
programming techniques to obtain the tightest 
bounds on cells altered for disclosure reasons 

 
a. Complete suppression 
 

 | ' | / ,
    where , set of CS cells
0, otherwise

ij ij ij
m o o

ij

X X X
PIL i j

⎧ −
⎪

= ∈⎨
⎪
⎩

 

 
b. Fixed interval suppression 
 

 | ' | / ,
   where , set of FI cells

0, otherwise

ij ij ij
m o o

ij

X X X
PIL i j

⎧ −
⎪

= ∈⎨
⎪
⎩

 

 
B) User information loss (%) experienced by a user 

without significant technical expertise. 
 

a. Complete suppression 
 

1,  for , set of CS cells
0, otherwiseij

i j
PIL

∈⎧
= ⎨
⎩

 

 
b. Fixed interval suppression 
 

 | '' | / ,
   where , set of FI cells

0, otherwise

ij ij ij
m o o

ij

X X X
PIL i j

⎧ −
⎪

= ∈⎨
⎪
⎩

 

 
C) Information loss for the noise model: 
 

 | | / ,  for all ,  ij ij ij
ij n o oPIL X X X i j= −  

 
 
For the complete suppression case user information 
loss, we assume the unsophisticated data user can not 
estimate any cell value. However, with algebraic 
manipulation, non-unique cell values can be estimated 
in a non-optimal way even by an unsophisticated data 
user. 
 
 
6.  Analysis 
 
BLS QCEW data used for this study was for the State 
of Maryland 1st quarter 2004 in manufacturing, retail 
trade, transportation and warehousing and selected 
services sectors (Table 2). 
 
The initial analysis of information loss was over all 
cells and protected cells. The s are averaged over 
all cells of desired study types to obtain the average 
percent information loss over these types of cells 
(Table 3a). Similarly s are averaged over only 
protected publications cells to obtain average percent 
information loss for protected publication cells (Table 
3b). These two tables show different aspects of the 
complete suppression and interval publication methods.  
Analyses of protected cells are of most interest as this 
is where we get information loss for FI. Fixed intervals 
provide only a slight improvement in information loss 

ijPIL

ijPIL

 
 



while the increase in data utility for estimates produced 
under the noise model is significant. 
 
Define absolute information loss at cell (i , j) for FI as: 
 

 | ' |,
     where , set of CS cells
0, otherwise

ij ij
m o

ij

X X
IL i j

⎧ −
⎪

= ∈⎨
⎪
⎩

  

 
Define absolute information loss at cell (i , j) under the 
noise model  as: 
 

 | |,  for all ,  ij ij
ij n oIL X X i= − j  

 
Note that the cell (i , j) information loss ijIL  is defined 

similarly to , except it is not normalized to the 
actual cell value. Total information loss in level of 
employment is calculated by adding absolute 
information loss due to each protected cell. The

ijPIL

ijIL s 
are then aggregated over respective types of cells to 
obtain Table 4. 
 
To calculate total information loss at hierarchical levels 
for FI, let: 
 

 ' ,
'      where , set of CS cells

0, otherwise

ij ij
m o

ij

X X
IL i j

⎧ −
⎪

= ∈⎨
⎪
⎩

 

 
To calculate total information loss at hierarchical levels 
under the noise model, let: 
 
 
 
 
Notice that absolute values are not taken for 'ijIL  in 
this case. To calculate the percent information loss at 
one NAICS digit level, first calculated the total 
information loss at each cell. Then, aggregate the 
relative value over the total employment. In table 5 we 
examine the total information loss in level of 
employment at each NAICS hierarchical levels the 
effect of aggregation on information loss. 
 
It should be noted that the results in tables 3 through 5 
for minimal information loss for FI are conservative 
since each LP is solved independently. 
 
7.  Conclusions 
 
We used both relative information loss and absolute IL 
in the analysis. The relative IL, which is the percentage 
of IL in a publication relative to the actual cell value, 

provides the value delivered to data user that lost 
regardless of the magnitude of the cell value. On the 
contrary, the absolute IL provides the user the quantity 
that is removed from the final publication table due to 
confidentiality protection reasons. Relative IL are more 
meaningful to users who treats small and large 
segments equally, for example, a city planner who 
observes employment growth of all industry sectors; 
absolute IL may be favoured on the other hand by users 
want to know the levels, for example, an observer of 
nation employment growth. 
 
Overall, regardless of confidentiality protection method 
used, there is slightly less information loss under the 
minimal information loss scenario than under the user 
information scenario for FI. Estimates produced under 
the noise model provide more data utility than FI over 
complete suppression.  Similarly, as previous research 
has indicated, regardless of the user scenario, complete 
suppression method has less data utility than either the 
fixed interval publication method or estimates produced 
under the noise model. 
 
When IL is averaged over all cells, marginal cells tend 
to lose less information than the interior cells. This is 
caused by the fact that there are more interior cells 
being protected in percentage than the marginal cells. 
This is not true if averaged over only protected cells. 
Marginal cells lose more in average among protected 
cells. However, by looking at Table 5, where IL are 
listed at each aggregation levels, as aggregation level 
goes up, less IL happens. This indicates most IL is 
actually occurring on the lower aggregates. 
 
The level and relative information loss are about the 
same for CS method between primary and secondary 
cells. But FI method tends to lose less than the second 
and primary cell suppression combined. 
 
 
In summary, sophisticated users, including purposeful 
attackers will drive out more information from 
protected tables, under either protection method; FI 
method will provide more information to data users 
than the CS method; and at lower aggregates and 
interior cell level, this is the location where most 
information loss actually occurred. 
 
 
 

 
 



 
 
 
 
 
 
Table 2: Industrial distribution of actual test data sample  

    
2-digit NAICS Industry Total Number of 

Establishments Total Employment 

31-32 Manufacturing 1,008 54,244 
44-54 Retail Trade 4,356 332,011 

48-49 Transportation and 
Warehousing 864 65,224 

51 Information 451 37,650 

52 Finance and 
Insurance 1,764 137,511 

53 Real Estate and 
Rental and Leasing 1,078 80,104 

54 
Professional, 
Scientific and 
Technical Services 

3,871 289,659 

62 Health Care and 
Social Assistance 3,151 169,985 

  Total              16,527 Total         1,166,388 
Ref: QCEW State of Maryland 1st quarter 2004. 
 
 
 
Table 3a: Average percent information loss per cell among different cell types   
                

 Minimal information loss (%)  User information loss (%) 

Cell type Complete 
Suppression 

Fixed 
interval 

publication 

Random 
noise   Complete 

Suppression 

Fixed 
interval 

publication 

Random 
noise 

Primary suppression 89.5  100 
Secondary suppression 78.5 

35.2 10.9 3
 100 

52.5 10.9 3

Interior cells 1 68.3 9.07 3.61  72.2 20.5 3.61 
Marginal cells 2 29.6 7.55 0.19  31.8 10.9 0.19 
All cells 51.2 8.18 0.1   55.6 17.5 0.1 
        
1: Cells that are not sums of other cells       
2: Cells that are sums of at least one other cell.       
3: Only primary cells are counted for random noise method      

 

 
 



 
Table 3b: Average percent information loss per cell among p otected publication 
cells   

                

 Minimal information loss (%)  User information loss (%) 

Cell type Complete 
Suppression 

Fixed 
interval 

publication 

Random 
noise   Complete 

Suppression 

Fixed 
interval 

publication 

Random 
noise 

Primary suppression 92.5  100 
Secondary suppression 89.2 

75.2 10.9 3
 100 

81.2 10.9 3

Interior cells 1 88.4 74.8 6.93  100 80.1 6.93 
Marginal cells 2 94.6 75.9 1.55  100 82.2 1.55 
All cells 92.5 75.2 0.68   100 81.2 0.68 
        
1: Cells that are not sums of other cells       
2: Cells that are sums of at least one other cell.       
3: Only primary cells are counted for random noise method      

r 

 
 
 
 
Table 4: Total information loss in level of employment in different types of publication cells  
                

 Minimal information loss  User information loss 

Cell type Complete 
Suppression 

Fixed 
interval 

publication 

Random 
noise   Complete 

Suppression 

Fixed 
interval 

publication 

Random 
noise 

Primary suppression 60,535  71,317 
Secondary suppression 41,204 

86621 NA 
 55,962 

95355 NA 

Interior cells 79,894 66729 10284  92,335 74547 10284 
Marginal cells 21,845 19892 2734  34,944 20808 2734 
All cells 101,739 86621 13365   127,279 95355 13365 

 
 
 
 
 
 
Table 5: Total information loss in level of employment at each NAICS hierarchical 
levels   
                

Minimal information loss (%)  User information loss (%) 
NAICS hierarchical 

levels Complete 
Suppression 

Fixed 
interval 

publication 

Random 
noise   Complete 

Suppression 

Fixed 
interval 

publication 

Random 
noise 

Six-digit 7.85 6.99 4.57  8.07 7.11 4.57 
Five-digit 3.95 3.05 0.022  3.21 3.29 0.022 
Four-digit 0.199 0.182 0.014  0.212 0.195 0.014 
Three-digit 0.015 0.001 0.011  0.021 0.001 0.011 
Two-digit 0 0 0.0059   0 0 0.0059 
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